中国电力 ›› 2016, Vol. 49 ›› Issue (12): 127-132.DOI: 10.11930/j.issn.1004-9649.2016.12.127.06

• 新能源 • 上一篇    下一篇

一种多输出模型的风电功率超短期预测方法

杨茂,董骏城   

  1. 东北电力大学 电气工程学院,吉林 吉林 132012
  • 收稿日期:2016-08-20 出版日期:2016-12-20 发布日期:2016-12-29
  • 作者简介:杨茂(1982—),男,吉林市人,博士,副教授,从事风力发电技术研究。E-mail: yangmao820@163.com
  • 基金资助:
    国家重点基础研究发展计划项目(973计划)(2013CB228201);国家自然科学基金资助项目(51307017);吉林省科技发展计划项目(20140520129JH);吉林省教育厅“十二五”科学技术研究项目(吉教科合字[2014]第474号);吉林省产业技术研究与开发专项项目(2014Y124)

A Short-Term Wind Power Prediction Method of Multiple Output Model

YANG Mao, DONG Juncheng   

  1. College of Electrical Engineering, Northeast Dianli University, Jilin 132012, China
  • Received:2016-08-20 Online:2016-12-20 Published:2016-12-29
  • Supported by:
    This work is supported by the National Major Basic Research Program (973 Program) (No. 2013CB228201); the National Natural Science Foundation of China(No. 51307017); the Scientific, Technological Planning Project of Jilin Province(No. 20140520129JH); The “12th Five-Year Plan” Scientific and Technological Research Project for Education Department of Jilin province (Ji Jiao Ke He Zi[2014] No. 474) and Industrial Technology Research and Development for Special Project of Jilin Province (No. 2014Y124).

摘要: 高精度的风电功率预测对于电力系统的安全经济运行具有重要意义。基于大量风电功率历史数据,结合相关性分析和K近邻算法,提出一种新的多输出模型的风电功率超短期多步预测方法。以东北地区2个风电场实测风电功率数据为例进行分析计算,使用国家能源局提供的风电功率实时预测评价指标对两种多步预测方式进行评价。结果表明该方法预测精度高,方法简单,具有一定的工程实用价值。

关键词: 风电功率, 相关性分析, K近邻, 超短期, 预测

Abstract: Accurate wind power prediction is important for power system planning and operation. Based on extensive wind power historical data, a new short-term prediction method of multiple output model is proposed by combing correlation analysis and K-Nearest Neighbor algorithm. Taken field measurement data from two wind farms in Northeast region as example, the two multi-step prediction methods are evaluated by using index defined by National Energy Board. The results show high precision and simplicity of proposed method.

Key words: wind power, correlation analysis, K-Nearest Neighbors, short-term, prediction

中图分类号: