中国电力 ›› 2024, Vol. 57 ›› Issue (4): 100-110.DOI: 10.11930/j.issn.1004-9649.202306080
高岩1(), 吴汉斌1(
), 张纪欣1(
), 张华铭2(
), 张沛3(
)
收稿日期:
2023-06-23
出版日期:
2024-04-28
发布日期:
2024-04-26
作者简介:
高岩(1982—),男,学士,高级工程师,从事新能源运行管理工作,E-mail:bd_gaoy@he.sgcc.com.cn基金资助:
Yan GAO1(), Hanbin WU1(
), Jixin ZHANG1(
), Huaming ZHANG2(
), Pei ZHANG3(
)
Received:
2023-06-23
Online:
2024-04-28
Published:
2024-04-26
Supported by:
摘要:
为准确量化复杂场景下光伏预测功率的不确定性,提出了一种基于时序卷积网络-注意力机制-长短期记忆网络组合的光伏功率短期概率预测方法。首先,基于多种相关性分析方法选出与光伏功率强相关的气象因素;然后,基于时序卷积网络的特征提取能力和长短期记忆网络的时序特征建模能力,并结合注意力机制和分位数回归,建立组合深度学习预测模型;最后,采用核密度估计方法生成连续概率密度函数。以实际集中式和分布式光伏电站为案例进行分析,结果表明:与长短期记忆网络、时序卷积网络、时序卷积网络-注意力机制和时序卷积网络-长短期记忆网络相比,所提方法在确保最优预测区间的同时,可以提升概率密度预测的性能。
高岩, 吴汉斌, 张纪欣, 张华铭, 张沛. 基于组合深度学习的光伏功率日前概率预测模型[J]. 中国电力, 2024, 57(4): 100-110.
Yan GAO, Hanbin WU, Jixin ZHANG, Huaming ZHANG, Pei ZHANG. Day-Ahead Probabilistic Prediction Model for Photovoltaic Power Based on Combined Deep Learning[J]. Electric Power, 2024, 57(4): 100-110.
结构名称 | 超参数设置 | |
TCN#1 | i=2, o=10, p=3, d=1, k=4 | |
TCN#2 | i=10, o=10, p=9, d=3, k=4 | |
TCN#3 | i=10, o=10, p=18, d=6, k=4 | |
LSTM | iL=10, nl=2, hs=128 | |
全连接层 | iN=128, oN=58 |
表 1 TCN-Attention-LSTM主要结构超参数设置
Table 1 Hyperparameters setting for main structure of TCN- Attention-LSTM
结构名称 | 超参数设置 | |
TCN#1 | i=2, o=10, p=3, d=1, k=4 | |
TCN#2 | i=10, o=10, p=9, d=3, k=4 | |
TCN#3 | i=10, o=10, p=18, d=6, k=4 | |
LSTM | iL=10, nl=2, hs=128 | |
全连接层 | iN=128, oN=58 |
参数 | 数值 | |
学习率 | 0.001 | |
批处理参数 | 32 | |
优化器 | Adam | |
训练集∶测试集 | 9∶1 |
表 2 模型共同超参数
Table 2 Common hyperparameters of model
参数 | 数值 | |
学习率 | 0.001 | |
批处理参数 | 32 | |
优化器 | Adam | |
训练集∶测试集 | 9∶1 |
数据 | 模型 | PICP/ % | PINAW/ kW | SW分数/ kW | 训练时 间/s | |||||
集中式 | LSTM | 93.79 | 0.2979 | 5.5948 | 1603.97 | |||||
TCN | 96.57 | 0.3473 | 5.7086 | 121.89 | ||||||
TCN-Attention | 98.28 | 0.3693 | 5.9472 | 201.41 | ||||||
TCN-LSTM | 95.14 | 0.3259 | 5.7438 | 4260.87 | ||||||
TCN-Attention-LSTM | 97.18 | 0.3099 | 5.1763 | 5008.32 | ||||||
分布式 | LSTM | 88.68 | 0.3229 | 7.6214 | 912.94 | |||||
TCN | 96.60 | 0.4497 | 10.2056 | 33.72 | ||||||
TCN-Attention | 92.08 | 0.3211 | 7.9540 | 122.67 | ||||||
TCN-LSTM | 94.34 | 0.3525 | 8.9185 | 1039.98 | ||||||
TCN-Attention-LSTM | 93.96 | 0.2674 | 7.2308 | 1168.41 |
表 3 90%置信区间各模型评价指标以及模型训练所需要的时间
Table 3 Evaluation metrics of each model within a 90% confidence interval and training time of different models
数据 | 模型 | PICP/ % | PINAW/ kW | SW分数/ kW | 训练时 间/s | |||||
集中式 | LSTM | 93.79 | 0.2979 | 5.5948 | 1603.97 | |||||
TCN | 96.57 | 0.3473 | 5.7086 | 121.89 | ||||||
TCN-Attention | 98.28 | 0.3693 | 5.9472 | 201.41 | ||||||
TCN-LSTM | 95.14 | 0.3259 | 5.7438 | 4260.87 | ||||||
TCN-Attention-LSTM | 97.18 | 0.3099 | 5.1763 | 5008.32 | ||||||
分布式 | LSTM | 88.68 | 0.3229 | 7.6214 | 912.94 | |||||
TCN | 96.60 | 0.4497 | 10.2056 | 33.72 | ||||||
TCN-Attention | 92.08 | 0.3211 | 7.9540 | 122.67 | ||||||
TCN-LSTM | 94.34 | 0.3525 | 8.9185 | 1039.98 | ||||||
TCN-Attention-LSTM | 93.96 | 0.2674 | 7.2308 | 1168.41 |
数据 | 模型 | CRPS/kW | ||
集中式 | LSTM | 0.0589 | ||
TCN | 0.0539 | |||
TCN-Attention | 0.0507 | |||
TCN-LSTM | 0.0433 | |||
TCN-Attention -LSTM | 0.0421 | |||
分布式 | LSTM | 0.0478 | ||
TCN | 0.0565 | |||
TCN-Attention | 0.0505 | |||
TCN-LSTM | 0.0445 | |||
TCN-Attention -LSTM | 0.0441 |
表 4 各种模型CRPS评价指标
Table 4 CRPS evaluation metrics for various models
数据 | 模型 | CRPS/kW | ||
集中式 | LSTM | 0.0589 | ||
TCN | 0.0539 | |||
TCN-Attention | 0.0507 | |||
TCN-LSTM | 0.0433 | |||
TCN-Attention -LSTM | 0.0421 | |||
分布式 | LSTM | 0.0478 | ||
TCN | 0.0565 | |||
TCN-Attention | 0.0505 | |||
TCN-LSTM | 0.0445 | |||
TCN-Attention -LSTM | 0.0441 |
1 | 国家能源局. 2022年光伏发电建设运行情况[EB/OL]. (2023-02-17)[2023-05-25]. http://www.nea.gov.cn/2023-02/17/c_1310698128.htm. |
2 | 卢俊杰, 蔡涛, 郎建勋, 等. 基于集群划分的光伏电站集群发电功率短期预测方法[J]. 高电压技术, 2022, 48 (5): 1943- 1951. |
LU Junjie, CAI Tao, LANG Jianxun, et al. Short-term power output forecasting of clustered photovoltaic solar plants based on cluster partition[J]. High Voltage Engineering, 2022, 48 (5): 1943- 1951. | |
3 |
SANGRODY H, ZHOU N, ZHANG Z A. Similarity-based models for day-ahead solar PV generation forecasting[J]. IEEE Access, 2020, 8, 104469- 104478.
DOI |
4 |
杨茂, 闫琦, 苏欣, 等. 季节分型下一种面向风电功率日前预测的深度自适应滤波框架[J]. 南方电网技术, 2023, 17 (6): 62- 71.
DOI |
YANG Mao, YAN Qi, SU Xin, et al. A depth self-adaptive filtering framework for wind power day-ahead prediction under seasonal classification[J]. Southern Power System Technology, 2023, 17 (6): 62- 71.
DOI |
|
5 |
LINDBERG O, LINGFORS D, ARNQVIST J, et al. Day-ahead probabilistic forecasting at a co-located wind and solar power park in Sweden: trading and forecast verification[J]. Advances in Applied Energy, 2023, 9, 100120.
DOI |
6 | 万灿, 崔文康, 宋永华. 新能源电力系统概率预测: 基本概念与数学原理[J]. 中国电机工程学报, 2021, 41 (19): 6493- 6509. |
WAN Can, CUI Wenkang, SONG Yonghua. Probabilistic forecasting for power systems with renewable energy sources: basic concepts and mathematical principles[J]. Proceedings of the CSEE, 2021, 41 (19): 6493- 6509. | |
7 |
GOLESTANEH F, PINSON P, GOOI H B. Very short-term nonparametric probabilistic forecasting of renewable energy generation—with application to solar energy[J]. IEEE Transactions on Power Systems, 2016, 31 (5): 3850- 3863.
DOI |
8 |
HUANG Q, WEI S Y. Improved quantile convolutional neural network with two-stage training for daily-ahead probabilistic forecasting of photovoltaic power[J]. Energy Conversion and Management, 2020, 220, 113085.
DOI |
9 | 项明俊. 基于地基云图的光伏发电功率概率预测[D]. 杭州: 浙江大学, 2022. |
XIANG Mingjun. Probabilistic forecasting of photovoltaic power generation based on ground cloud images [D]. Hangzhou: Zhejiang University, 2022. | |
10 |
GU B, SHEN H Q, LEI X H, et al. Forecasting and uncertainty analysis of day-ahead photovoltaic power using a novel forecasting method[J]. Applied Energy, 2021, 299, 117291.
DOI |
11 |
MEI F, GU J Q, LU J X, et al. Day-ahead nonparametric probabilistic forecasting of photovoltaic power generation based on the LSTM-QRA ensemble model[J]. IEEE Access, 2020, 8, 166138- 166149.
DOI |
12 | 姚程文, 杨苹, 刘泽健. 基于CNN-GRU混合神经网络的负荷预测方法[J]. 电网技术, 2020, 44 (9): 3416- 3424. |
YAO Chengwen, YANG Ping, LIU Zejian. Load forecasting method based on CNN-GRU hybrid neural network[J]. Power System Technology, 2020, 44 (9): 3416- 3424. | |
13 | BAI S J, ZICO KOLTER J, KOLTUN V. An empirical evaluation of generic convolutional and recurrent networks for sequence modeling[J]. ArXiv e-Prints, 2018: arXiv: 1803.01271. |
14 | 宋绍剑, 姜屹远, 刘斌. 一种TCN的改进模型及其在短期光伏功率区间预测的应用[J]. 计算机应用研究, 2023, 40 (10): 3064- 3069. |
SONG Shaojian, JIANG Yiyuan, LIU Bin. Improved TCN model and its application in short-term photovoltaic power interval prediction[J]. Application Research of Computers, 2023, 40 (10): 3064- 3069. | |
15 | 庞昊, 高金峰, 杜耀恒. 基于时间卷积网络分位数回归的短期负荷概率密度预测方法[J]. 电网技术, 2020, 44 (4): 1343- 1350. |
PANG Hao, GAO Jinfeng, DU Yaoheng. A short-term load probability density prediction based on quantile regression of time convolution network[J]. Power System Technology, 2020, 44 (4): 1343- 1350. | |
16 | 陈禹帆, 温蜜, 张凯, 等. 基于相似日匹配及TCN-Attention的短期光伏出力预测[J]. 电测与仪表, 2022, 59 (10): 108- 116. |
CHEN Yufan, WEN Mi, ZHANG Kai, et al. Short-term photovoltaic output forecasting based on similar day matching and TCN-Attention[J]. Electrical Measurement & Instrumentation, 2022, 59 (10): 108- 116. | |
17 | ZANG H X, CHENG L L, DING T, et al. Day-ahead photovoltaic power forecasting approach based on deep convolutional neural networks and meta learning[J]. International Journal of Electrical Power & Energy Systems, 2020, 118, 105790. |
18 | 王开艳, 杜浩东, 贾嵘, 等. 基于相似日聚类和QR-CNN-BiLSTM模型的光伏功率短期区间概率预测[J]. 高电压技术, 2022, 48 (11): 4372- 4388. |
WANG Kaiyan, DU Haodong, JIA Rong, et al. Short-term interval probabilistic forecasting of photovoltaic power based on similar day clustering and QR-CNN-BiLSTM model[J]. High Voltage Engineering, 2022, 48 (11): 4372- 4388. | |
19 | 刘昳娟, 陈云龙, 刘继彦, 等. 基于集成学习的分布式光伏发电功率日前预测[J]. 中国电力, 2022, 55 (9): 38- 45. |
LIU Yijuan, CHEN Yunlong, LIU Jiyan, et al. Ensemble learning-based day-ahead power forecasting of distributed photovoltaic generation[J]. Electric Power, 2022, 55 (9): 38- 45. | |
20 | 黄书民, 蒋林高, 李志川, 等. 基于PSO寻优与DBN神经网络的电晕损耗预测[J]. 中国电力, 2022, 55 (6): 95- 102, 214. |
HUANG Shumin, JIANG Lingao, LI Zhichuan, et al. Corona loss prediction of UHV AC transmission line based on DBN neural network optimized by PSO[J]. Electric Power, 2022, 55 (6): 95- 102, 214. | |
21 | 冯裕祺, 李辉, 李利娟, 等. 基于CNN-GRU的光伏电站电压轨迹预测[J]. 中国电力, 2022, 55 (7): 163- 171. |
FENG Yuqi, LI Hui, LI Lijuan, et al. Voltage trajectory prediction of photovoltaic power station based on CNN-GRU[J]. Electric Power, 2022, 55 (7): 163- 171. | |
22 |
刘辉, 凌宁青, 罗志强, 等. 基于TCN-LSTM和气象相似日集的电网短期负荷预测方法[J]. 智慧电力, 2022, 50 (8): 30- 37.
DOI |
LIU Hui, LING Ningqing, LUO Zhiqiang, et al. Power grid short-term load forecasting method based on TCN-LSTM and meteorological similar day sets[J]. Smart Power, 2022, 50 (8): 30- 37.
DOI |
|
23 | 符杨, 任子旭, 魏书荣, 等. 基于改进LSTM-TCN模型的海上风电超短期功率预测[J]. 中国电机工程学报, 2022, 42 (12): 4292- 4303. |
FU Yang, REN Zixu, WEI Shurong, et al. Ultra-short-term power prediction of offshore wind power based on improved LSTM-TCN model[J]. Proceedings of the CSEE, 2022, 42 (12): 4292- 4303. | |
24 | 赵雅雪, 王旭, 蒋传文, 等. 基于最大信息系数相关性分析和改进多层级门控LSTM的短期电价预测方法[J]. 中国电机工程学报, 2021, 41 (1): 135- 146, 404. |
ZHAO Yaxue, WANG Xu, JIANG Chuanwen, et al. A novel short-term electricity price forecasting method based on correlation analysis with the maximal information coefficient and modified multi-hierarchy gated LSTM[J]. Proceedings of the CSEE, 2021, 41 (1): 135- 146, 404. | |
25 |
HE Y Y, XU Q F, WAN J H, et al. Short-term power load probability density forecasting based on quantile regression neural network and triangle kernel function[J]. Energy, 2016, 114, 498- 512.
DOI |
26 |
DONG W C, SUN H X, TAN J X, et al. Regional wind power probabilistic forecasting based on an improved kernel density estimation, regular vine copulas, and ensemble learning[J]. Energy, 2022, 238, 122045.
DOI |
[1] | 陶磊, 罗萍萍, 林济铿. 基于深度学习的直流微电网虚假数据注入攻击二阶段检测方法[J]. 中国电力, 2024, 57(9): 11-19. |
[2] | 杨国华, 祁鑫, 贾睿, 刘一峰, 蒙飞, 马鑫, 邢潇文. 基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测[J]. 中国电力, 2024, 57(2): 55-61. |
[3] | 陈璨, 苏紫诺, 马原, 刘佳林, 王玉庆, 王飞. 基于分层关联性建模的分布式光伏功率超短期概率预测[J]. 中国电力, 2024, 57(12): 50-59. |
[4] | 吴晓刚, 阎洁, 葛畅, 唐雅洁, 倪筹帷, 季青锋. 基于改进GRU-CNN的风光水一体化超短期功率预测方法[J]. 中国电力, 2023, 56(9): 178-186,205. |
[5] | 陆友文, 崔昊, 陈佳宁, 彭祥佳, 冯双, 刘栋. 基于RA-CNN和同步相量的风电场次/超同步振荡参数智能辨识方法[J]. 中国电力, 2023, 56(4): 46-55,67. |
[6] | 周震震, 宋云海, 何宇浩, 王黎伟, 黄和燕, 何珏, 朱志航, 闫云凤. 基于分组查询注意力的可扩展电力人员行为分类方法[J]. 中国电力, 2023, 56(11): 77-85. |
[7] | 苏向敬, 宇海波, 符杨, 田书欣, 李海瑜, 耿福海. 基于DALSTM和联合分位数损失的海上风电功率概率预测[J]. 中国电力, 2023, 56(11): 10-19. |
[8] | 李冰, 白云山, 赵宽, 郭聪彬, 翟永杰. 基于HSCA-YOLOv7的风电机组叶片表面缺陷检测算法[J]. 中国电力, 2023, 56(10): 43-52. |
[9] | 陈铁, 张治藩, 李咸善, 陈一夫, 李鸿鑫. 基于混合模态分解和LSTM-CNN的变压器油中溶解气体浓度预测[J]. 中国电力, 2023, 56(1): 132-141. |
[10] | 樊江川, 于昊正, 刘慧婷, 杨丽君, 安佳坤. 基于多分支门控残差卷积神经网络的短期电力负荷预测[J]. 中国电力, 2022, 55(11): 155-162,174. |
[11] | 赵会茹, 赵一航, 郭森. 基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测[J]. 中国电力, 2020, 53(6): 48-55. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||