[1] DE FARIA H Jr, COSTA J G S, OLIVAS J L M. A review of monitoring methods for predictive maintenance of electric power transformers based on dissolved gas analysis[J]. Renewable and Sustainable Energy Reviews, 2015, 46(2): 201–209. [2] 李刚, 于长海, 刘云鹏, 等. 电力变压器故障预测与健康管理: 挑战与展望[J]. 电力系统自动化, 2017, 41(23): 156–167 LI Gang, YU Changhai, LIU Yunpeng, et al. Challenges and prospects of fault prognostic and health management for power transformer[J]. Automation of Electric Power Systems, 2017, 41(23): 156–167 [3] 刘云鹏, 许自强, 李刚, 等. 人工智能驱动的数据分析技术在电力变压器状态检修中的应用综述[J]. 高电压技术, 2019, 45(2): 337–348 LIU Yunpeng, XU Ziqiang, LI Gang, et al. Review on applications of artificial intelligence driven data analysis technology in condition based maintenance of power transformers[J]. High Voltage Engineering, 2019, 45(2): 337–348 [4] RAO U M, FOFANA I, RAJESH K N V P S, et al. Identification and application of machine learning algorithms for transformer dissolved gas analysis[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(5): 1828–1835. [5] 赵冬梅, 杜刚, 刘鑫, 等. 基于时序分解及机器学习的风电功率组合预测模型[J]. 现代电力, 2022, 39(1): 9–19 ZHAO Dongmei, DU Gang, LIU Xin, et al. Wind power combination prediction model based on time series decomposition and machine learning[J]. Modern Electric Power, 2022, 39(1): 9–19 [6] 陈振宇, 刘金波, 李晨, 等. 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44(2): 614–620 CHEN Zhenyu, LIU Jinbo, LI Chen, et al. Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020, 44(2): 614–620 [7] 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55(5): 47–56,110 JIA Rui, YANG Guohua, ZHENG Haofeng, et al. Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J]. Electric Power, 2022, 55(5): 47–56,110 [8] 张鹏, 齐波, 张若愚, 等. 基于经验小波变换和梯度提升径向基的变压器油中溶解气体预测方法[J]. 电网技术, 2021, 45(9): 3745–3754 ZHANG Peng, QI Bo, ZHANG Ruoyu, et al. Dissolved gas prediction in transformer oil based on empirical wavelet transform and gradient boosting radial basis[J]. Power System Technology, 2021, 45(9): 3745–3754 [9] 赵会茹, 赵一航, 郭森. 基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测[J]. 中国电力, 2020, 53(6): 48–55 ZHAO Huiru, ZHAO Yihang, GUO Sen. Short-term load forecasting based on complementary ensemble empirical mode decomposition and long short-term memory[J]. Electric Power, 2020, 53(6): 48–55 [10] 王俊, 李霞, 周昔东, 等. 基于VMD和LSTM的超短期风速预测[J]. 电力系统保护与控制, 2020, 48(11): 45–52 WANG Jun, LI Xia, ZHOU Xidong, et al. Ultra-short-term wind speed prediction based on VMD-LSTM[J]. Power System Protection and Control, 2020, 48(11): 45–52 [11] 向玲, 邓泽奇. 基于改进经验小波变换和最小二乘支持向量机的短期风速预测[J]. 太阳能学报, 2021, 42(2): 97–103 XIANG Ling, DENG Zeqi. Short-term wind speed forecasting based on improved empirical wavelet transform and least squares support vector machines[J]. Acta Energiae Solaris Sinica, 2021, 42(2): 97–103 [12] 周锋, 孙廷玺, 权少静, 等. 基于集合经验模态分解和极限学习机的变压器油中溶解气体体积分数预测方法[J]. 高电压技术, 2020, 46(10): 3658–3665 ZHOU Feng, SUN Tingxi, QUAN Shaojing, et al. Predication of dissolved gases concentration in transformer oil based on ensemble empirical mode decomposition and extreme learning machine[J]. High Voltage Engineering, 2020, 46(10): 3658–3665 [13] 杨德州, 刘嘉明, 宋汶秦, 等. 基于改进型自适应白噪声完备集成经验模态分解的工业用户负荷预测方法[J]. 电力系统保护与控制, 2022, 50(4): 36–43 YANG Dezhou, LIU Jiaming, SONG Wenqin, et al. A load forecasting method for industrial customers based on the ICEEMDAN algorithm[J]. Power System Protection and Control, 2022, 50(4): 36–43 [14] LIU H, TIAN H Q, LIANG X F, et al. Wind speed forecasting approach using secondary decomposition algorithm and Elman neural networks[J]. Applied Energy, 2015, 157: 183–194. [15] 陈锦鹏, 胡志坚, 陈纬楠, 等. 二次模态分解组合DBiLSTM-MLR的综合能源系统负荷预测[J]. 电力系统自动化, 2021, 45(13): 85–94 CHEN Jinpeng, HU Zhijian, CHEN Weinan, et al. Load prediction of integrated energy system based on combination of quadratic modal decomposition and deep bidirectional long short-term memory and multiple linear regression[J]. Automation of Electric Power Systems, 2021, 45(13): 85–94 [16] 李佳, 邓科, 侯玉莲, 等. 基于GRA-CEEMDAN-BiLSTM的变压器油中溶解气体浓度预测[J]. 变压器, 2022, 59(6): 42–47 LI Jia, DENG Ke, HOU Yulian, et al. Prediction of dissolved gas concentration in transformer oil based on GRA-CEEMDAN-BiLSTM[J]. Transformer, 2022, 59(6): 42–47 [17] 苏向敬, 周汶鑫, 李超杰, 等. 基于双重注意力LSTM神经网络的可解释海上风电出力预测[J]. 电力系统自动化, 2022, 46(7): 141–151 SU Xiangjing, ZHOU Wenxin, LI Chaojie, et al. Interpretable offshore wind power output forecasting based on long short-term memory neural network with dual-stage attention[J]. Automation of Electric Power Systems, 2022, 46(7): 141–151 [18] AGGA A, ABBOU A, LABBADI M, et al. CNN-LSTM: An efficient hybrid deep learning architecture for predicting short-term photovoltaic power production[J]. Electric Power Systems Research, 2022, 208: 107908. [19] HE Z H, ZHOU J H, DAI H N, et al. Gold price forecast based on LSTM-CNN model[C]//2019 IEEE Intl Conf on Dependable, Autonomic and Secure Computing, Intl Conf on Pervasive Intelligence and Computing, Intl Conf on Cloud and Big Data Computing, Intl Conf on Cyber Science and Technology Congress. Fukuoka, Japan. IEEE, 2019: 1046–1053. [20] LI P, ABDEL-ATY M, YUAN J H. Real-time crash risk prediction on arterials based on LSTM-CNN[J]. Accident Analysis & Prevention, 2020, 135: 105371. [21] COLOMINAS M A, SCHLOTTHAUER G, TORRES M E. Improved complete ensemble EMD: a suitable tool for biomedical signal processing[J]. Biomedical Signal Processing and Control, 2014, 14(7): 19–29. [22] 李文武, 张鹏宇, 石强, 等. 基于聚合混合模态分解和时序卷积神经网络的综合能源系统负荷修正预测[J]. 电网技术, 2022, 46(9): 3345–3357 LI Wenwu, ZHANG Pengyu, SHI Qiang, et al. Correction prediction of integrated energy system load based on aggregated mixed mode decomposition and TCN[J]. Power System Technology, 2022, 46(9): 3345–3357 [23] 张学清, 梁军, 张熙, 等. 基于样本熵和极端学习机的超短期风电功率组合预测模型[J]. 中国电机工程学报, 2013, 33(25): 33–40, 8 ZHANG Xueqing, LIANG Jun, ZHANG Xi, et al. Combined model for ultra short-term wind power prediction based on sample entropy and extreme learning machine[J]. Proceedings of the CSEE, 2013, 33(25): 33–40, 8 [24] 陈艳平, 毛弋, 陈萍, 等. 基于EEMD-样本熵和Elman神经网络的短期电力负荷预测[J]. 电力系统及其自动化学报, 2016, 28(3): 59–64 CHEN Yanping, MAO Yi, CHEN Ping, et al. Short-term power load forecasting based on ensemble empirical mode decomposition-sample entropy and Elman neural network[J]. Proceedings of the CSU-EPSA, 2016, 28(3): 59–64 [25] 高艳丰, 朱永利, 闫红艳, 等. 基于VMD和TEO的高压输电线路雷击故障测距研究[J]. 电工技术学报, 2016, 31(1): 24–33 GAO Yanfeng, ZHU Yongli, YAN Hongyan, et al. Study on lighting fault locating of high-voltage transmission lines based on VMD and TEO[J]. Transactions of China Electrotechnical Society, 2016, 31(1): 24–33 [26] 崔宇, 侯慧娟, 胥明凯, 等. 基于双重注意力机制的变压器油中溶解气体预测模型[J]. 中国电机工程学报, 2020, 40(1): 338–347, 400 CUI Yu, HOU Huijuan, XU Mingkai, et al. A prediction method for dissolved gas in power transformer oil based on dual-stage attention mechanism[J]. Proceedings of the CSEE, 2020, 40(1): 338–347, 400 [27] 陈铁, 陈卫东, 李咸善, 等. 基于EMD和GCT的变压器油中溶解气体预测[J]. 高压电器, 2022, 58(4): 70–79 CHEN Tie, CHEN Weidong, LI Xianshan, et al. Dissolved gas prediction in transformer oil based on EMD and GCT[J]. High Voltage Apparatus, 2022, 58(4): 70–79 [28] 赵兵, 王增平, 纪维佳, 等. 基于注意力机制的CNN-GRU短期电力负荷预测方法[J]. 电网技术, 2019, 43(12): 4370–4376 ZHAO Bing, WANG Zengping, JI Weijia, et al. A short-term power load forecasting method based on attention mechanism of CNN-GRU[J]. Power System Technology, 2019, 43(12): 4370–4376 [29] 陈铁, 冷昊伟, 李咸善, 等. 基于油中气体分析与类重叠特征的变压器分层故障诊断模型[J]. 中国电力, 2022, 55(7): 22–32, 41 CHEN Tie, LENG Haowei, LI Xianshan, et al. Transformer hierarchical fault diagnosis model based on dissolved gas analysis of insulating oil and class overlap features[J]. Electric Power, 2022, 55(7): 22–32, 41
|