[1] 刘其常. 一起主变零序差动误动分析[J]. 中国水运(下半月), 2012, 12(11): 70–71 LIU Qichang. Analysis of a zero sequence differential malfunction of main transformer[J]. China Water Transport, 2012, 12(11): 70–71 [2] 王维俭. 变压器保护运行不良的反思[J]. 电力自动化设备, 2001, 21(10): 1–3 WANG Weijian. Consideration on the improper operation of transformer protection[J]. Electric Power Automation Equipment, 2001, 21(10): 1–3 [3] 王维俭. 再谈220 kV及以上大型变压器装设零序差动保护的必要性[J]. 电力自动化设备, 2003, 23(4): 1–5 WANG Weijian. Necessity of zero-sequence differential protection for large-sized transformer[J]. Electric Power Automation Equipment, 2003, 23(4): 1–5 [4] 罗小莉, 赵安国, 郭晓冬. 新型变压器零序差动保护方案设计[J]. 电力自动化设备, 2007, 27(7): 119–121 LUO Xiaoli, ZHAO Anguo, GUO Xiaodong. Scheme design of transformer zero-sequence differential protection[J]. Electric Power Automation Equipment, 2007, 27(7): 119–121 [5] 石恒初. 500 kV变压器零序差动保护误动事故分析[J]. 电工技术, 2012(5): 15–16, 24 SHI Hengchu. Analysis of misoperation accident of zero sequence differential protection of 500 kV transformer[J]. Electric Engineering, 2012(5): 15–16, 24 [6] 兀鹏越, 王团结, 许寅智, 等. 500 kV主变零差保护的现场投运试验及分析[J]. 华北电力技术, 2011(11): 8–11 WU Pengyue, WANG Tuanjie, XU Yinzhi, et al. Field test and analysis of 500 kV transformer zero-sequence differential protection[J]. North China Electric Power, 2011(11): 8–11 [7] 詹勤辉, 王世祥, 张胜宝. 一起500 kV主变零差保护误动原因分析及预防措施[J]. 继电器, 2007, 35(24): 71–73 ZHAN Qinhui, WANG Shixiang, ZHANG Shengbao. Analysis of a 500 kV transformer zero-sequence differential protection fault and its prevention[J]. Relay, 2007, 35(24): 71–73 [8] WENG H L, GUO Y D, LIU Y K, et al. Normalized dynamic time warping distance based auxiliary restraint scheme for restricted earth fault protection of converter transformers[J]. IEEE Transactions on Power Delivery, 2022, 37(3): 1476–1487. [9] ZHENG T, YANG X H, GUO X C, et al. Zero-sequence differential current protection scheme for converter transformer based on waveform correlation analysis[J]. Energies, 2020, 13(7): 1814. [10] 陆明, 薛磊, 余江, 等. 变压器零序差动保护的分析和改进[J]. 南方电网技术, 2018, 12(10): 35–40 LU Ming, XUE Lei, YU Jiang, et al. Analysis and improvement of zero sequence differential protection for transformer[J]. Southern Power System Technology, 2018, 12(10): 35–40 [11] 吴大立, 尹项根, 张哲, 等. 基于负序电流判别的变压器差动保护零序电流自动补偿方法[J]. 电力自动化设备, 2007, 27(2): 28–31 WU Dali, YIN Xianggen, ZHANG Zhe, et al. Zero-sequence Current automatic compensation of transformer differential protection based on negative-sequence current[J]. Electric Power Automation Equipment, 2007, 27(2): 28–31 [12] 罗美玲, 国兴超, 于晓军, 等. 基于波形相关性分析的换流变压器零序差动保护方案[J]. 电力系统保护与控制, 2020, 48(12): 80–89 LUO Meiling, GUO Xingchao, YU Xiaojun, et al. Zero-sequence differential protection scheme for a converter transformer based on waveform correlation analysis[J]. Power System Protection and Control, 2020, 48(12): 80–89 [13] KRSTIVOJEVIC J, DJURIC M. A new algorithm for avoiding maloperation of transformer restricted earth fault protection caused by the transformer magnetizing inrush current and current transformer saturation[J]. Turkish Journal of Electrical Engineering & Computer Sciences, 2016, 24: 5025–5042. [14] 鲁俊生. 交直流深度耦合下变压器差动类保护动作性能分析及新原理研究[D]. 武汉: 华中科技大学, 2016. LU Junsheng. Performance analysis and new principle research of transformer differential protection under AC-DC deep coupling[D]. Wuhan: Huazhong University of Science and Technology, 2016. [15] 谢创树. 核电厂变压器零序差动保护配置及其整定计算[J]. 南方能源建设, 2015, 2(4): 74–80 XIE Chuangshu. Design and setting of zero-sequence current differential protection for transformers in nuclear power plants[J]. Southern Energy Construction, 2015, 2(4): 74–80 [16] 翁汉琍, 郭祎达, 李昊威, 等. 涌流工况下换流变压器零序差动保护误动对策[J]. 电力系统自动化, 2020, 44(23): 143–149 WENG Hanli, GUO Yida, LI Haowei, et al. Countermeasures for mal-operation of zero-sequence differential protection of converter transformer under inrush current condition[J]. Automation of Electric Power Systems, 2020, 44(23): 143–149 [17] 李昊威. 复杂电磁暂态下换流变零序差动保护动作性能分析及对策研究[D]. 宜昌: 三峡大学, 2020. LI Haowei. Performance analysis and countermeasure research of zero sequence differential protection of converter transformer under complex electromagnetic transient[D]. Yichang: China Three Gorges University, 2020. [18] 王虹富, 穆世霞, 王兰香, 等. 考虑励磁非线性的通用变压器及其故障电磁暂态模型[J]. 智慧电力, 2017, 45(9): 60–67 WANG Hongfu, MU Shixia, WANG Lanxiang, et al. Electromagnetic transient model of transformer and its fault state considering nonlinear exciting branch[J]. Smart Power, 2017, 45(9): 60–67 [19] 李梅, 唐菊生. 基于综合制动判据的变压器差动保护研究[J]. 电力科学与技术学报, 2020, 35(2): 135–141 LI Mei, TANG Jusheng. Transformer differential protection method based on the comprehensive braking criterion[J]. Journal of Electric Power Science and Technology, 2020, 35(2): 135–141 [20] 曾耀吾, 李晓松, 陈萌, 等. 机车牵引变压器空载合闸励磁涌流特性分析[J]. 电力科学与技术学报, 2013, 28(4): 19–23, 30 ZENG Yaowu, LI Xiaosong, CHEN Meng, et al. Magnetizing inrush current characteristics of locomotive traction transformer no-load switching[J]. Journal of Electric Power Science and Technology, 2013, 28(4): 19–23, 30 [21] 吕宁. 变压器差动保护中励磁涌流和CT饱和问题的研究[D]. 北京: 华北电力大学(北京), 2009 LV Ning. Research on inrush current and CT saturation in transformer differential protection[D]. Beijing: North China Electric Power University, 2009. [22] 徐艳春, 范钟耀, 孙思涵, 等. 基于去趋势分析的大规模双馈风电场送出变压器差动保护[J]. 中国电力, 2023, 56(7): 186–197 XU Yanchun, FAN Zhongyao, SUN Sihan, et al. Differential protection of transmission transformer for large-scale doubly-fed wind farms based on detrended analysis[J]. Electric Power, 2023, 56(7): 186–197 [23] 李海涛, 刘北阳, 滕文涛, 等. 基于可变合闸角的变压器励磁涌流抑制方法[J]. 中国电力, 2022, 55(9): 70–78 LI Haitao, LIU Beiyan, TENG Wentao, et al. Research on inrush current suppression of transformer based on changeable closing angle[J]. Electric Power, 2022, 55(9): 70–78 [24] 胡勇, 郑黎明, 贾科, 等. 基于Tanimoto相似度的光伏场站送出线路纵联保护[J]. 电力系统保护与控制, 2021, 49(3): 74–79 HU Yong, ZHENG Liming, JIA Ke, et al. Pilot protection based on Tanimoto similarity for a photovoltaic station transmission line[J]. Power System Protection and Control, 2021, 49(3): 74–79 [25] 翁汉琍, 陈皓, 万毅, 等. 基于巴氏系数的变压器励磁涌流和故障差流识别新判据[J]. 电力系统保护与控制, 2020, 48(10): 113–122 WENG Hanli, CHEN Hao, WAN Yi, et al. A novel criterion to distinguish inrush current from fault current based on the Bhattacharyya coefficient[J]. Power System Protection and Control, 2020, 48(10): 113–122 [26] 张运驰, 高厚磊, 杜士昌. 基于综合形态算法的变压器励磁涌流识别方法[J]. 电力系统自动化, 2021, 45(24): 165–173 ZHANG Yunchi, GAO Houlei, DU Shichang. Identification method of transformer magnetizing inrush current based on comprehensive morphological algorithm[J]. Automation of Electric Power Systems, 2021, 45(24): 165–173
|