[1] 蔡维正, 郭昆丽, 刘璐雨, 等. 基于一阶LADRC控制的直驱风机次同步振荡抑制策略[J]. 中国电力, 2022, 55(4): 175–184 CAI Weizheng, GUO Kunli, LIU Luyu, et al. Subsynchronous oscillation mitigation strategy based on first-order LADRC for direct-drive wind turbines[J]. Electric Power, 2022, 55(4): 175–184 [2] 张放, 刘军, 李佳欣, 谢小荣. 基于同步相量轨迹拟合的电力系统次同步/超同步振荡的实时参数辨识[J/OL]. 中国电机工程学报: 1–13[2023-01-12]. DOI:10.13334/j.0258-8013.pcsee.212806. ZHANG Fang, LIU Jun, LI Jiaxin, et al. Real-time parameter identification with synchrophasor trajectory fitting technique for subsynchronous/supersynchronous oscillations in power systems[J/OL]. Proceeding of the CSEE: 1–13[2023-01-12]. DOI:10.13334/j.0258-8013.pcsee.212806. [3] 李奇南, 夏勇军, 张晓林, 等. 渝鄂柔性直流输电系统中高频振荡影响因素及抑制策略[J]. 中国电力, 2022, 55(7): 11–21 LI Qinan, XIA Yongjun, ZHANG Xiaolin, et al. Key factors of medium-high frequency oscillation in chongqing-hubei HVDC system and suppression strategies[J]. Electric Power, 2022, 55(7): 11–21 [4] 陈良双, 吴思奇, 喻文倩, 等. 基于转子侧附加阻尼控制的双馈风机并网次/超同步振荡抑制方法[J]. 电力系统保护与控制, 2021, 49(15): 47–58 CHEN Liangshuang, WU Siqi, YU Wenqian, et al. A sub/super-synchronous oscillation suppression method for a DFIG-connected grid based on additional damping control on the rotor side converter[J]. Power System Protection and Control, 2021, 49(15): 47–58 [5] 刘韶峰, 徐泰山, 鲍颜红, 等. 基于K-means聚类和同步挤压小波变换的次同步振荡检测[J]. 电力科学与技术学报, 2021, 36(4): 132–140 LIU Shaofeng, XU Taishan, BAO Yanhong, et al. Sub-synchronous oscillation detection based on K-means clustering and frequency synchrosqueezing wavelet transforms[J]. Journal of Electric Power Science and Technology, 2021, 36(4): 132–140 [6] 王红星, 郭敬梅, 谢志文, 等. 海上风电次/超同步振荡的网侧附加阻尼抑制方法[J]. 南方电网技术, 2021, 15(11): 49–55 WANG Hongxing, GUO Jingmei, XIE Zhiwen, et al. Grid-side supplementary damping suppression method of sub-& super-synchronous oscillation in offshore wind farms[J]. Southern Power System Technology, 2021, 15(11): 49–55 [7] 马宁宁, 谢小荣, 贺静波, 等. 高比例新能源和电力电子设备电力系统的宽频振荡研究综述[J]. 中国电机工程学报, 2020, 40(15): 4720–4732 MA Ningning, XIE Xiaorong, HE Jingbo, et al. Review of wide-band oscillation in renewable and power electronics highly integrated power systems[J]. Proceedings of the CSEE, 2020, 40(15): 4720–4732 [8] XIE X R, ZHAN Y, SHAIR J, et al. Identifying the source of subsynchronous control interaction via wide-area monitoring of sub/super-synchronous power flows[J]. IEEE Transactions on Power Delivery, 2020, 35(5): 2177–2185. [9] LIN H C. Power harmonics and interharmonics measurement using recursive group-harmonic power minimizing algorithm[J]. IEEE Transactions on Industrial Electronics, 2012, 59(2): 1184–1193. [10] 李宁, 左培丽, 王新刚, 等. 基于改进DFT和时域准同步的间谐波检测算法[J]. 电力自动化设备, 2017, 37(4): 170–178 LI Ning, ZUO Peili, WANG Xingang, et al. Inter-harmonic detection based on improved DFT and time-domain quasi-synchronization[J]. Electric Power Automation Equipment, 2017, 37(4): 170–178 [11] 张超, 王维庆, 邱衍江, 等. 大规模风电并网地区次同步谐波检测方法[J]. 高电压技术, 2019, 45(7): 2194–2202 ZHANG Chao, WANG Weiqing, QIU Yanjiang, et al. Detection method of subsynchronous harmonic in regions with large scale wind power paralleled in grid[J]. High Voltage Engineering, 2019, 45(7): 2194–2202 [12] 杨京, 王彤, 唐俊刺. 基于滑窗FFT的次同步振荡时变幅频在线监测方法[J]. 中国电力, 2020, 53(11): 139–146 YANG Jing, WANG Tong, TANG Junci. Subsynchronous oscillation time-varying amplitude frequency on-line monitoring method based on sliding window FFT[J]. Electric Power, 2020, 53(11): 139–146 [13] 赵黎丽. 基于相关Hanning窗插值的间谐波分析算法[J]. 电工技术学报, 2008, 23(11): 153–158 ZHAO Lili. Inter-harmonics analysis based on correlation hanning window and interpolation algorithm[J]. Transactions of China Electrotechnical Society, 2008, 23(11): 153–158 [14] CHEN L, ZHAO W, WANG F P, et al. An interharmonic phasor and frequency estimator for subsynchronous oscillation identification and monitoring[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68(6): 1714–1723. [15] 肖怀硕, 贾梧桐, 肖冰莹, 等. 基于改进变分模态分解的低频振荡模式辨别[J]. 电力工程技术, 2020, 39(2): 95–102 XIAO Huaishuo, JIA Wutong, XIAO Bingying, et al. An identification method for power system low-frequency oscillation based on parameter optimized variational mode decomposition[J]. Electric Power Engineering Technology, 2020, 39(2): 95–102 [16] 吴熙, 陈曦, 吕万, 等. 电力系统次同步振荡检测与在线定位技术综述[J]. 电力自动化设备, 2020, 40(9): 129–141 WU Xi, CHEN Xi, LÜ Wan, et al. Review of detection and online localization technology of sub-synchronous oscillation in power system[J]. Electric Power Automation Equipment, 2020, 40(9): 129–141 [17] YANG X M, ZHANG J N, XIE X R, et al. Interpolated DFT-based identification of sub-synchronous oscillation parameters using synchrophasor data[J]. IEEE Transactions on Smart Grid, 2020, 11(3): 2662–2675. [18] 刘灏, 李珏, 毕天姝, 等. 基于PMU相量的次/超同步间谐波识别方法[J]. 电网技术, 2017, 41(10): 3237–3245 LIU Hao, LI Jue, BI Tianshu, et al. Subsynchronous and supersynchronous inter-harmonic identification method based on phasor measurements[J]. Power System Technology, 2017, 41(10): 3237–3245 [19] LIU H, BI T S, LI J, et al. Inter-harmonics monitoring method based on PMUs[J]. IET Generation, Transmission & Distribution, 2017, 11(18): 4414–4421. [20] 刘灏, 许苏迪, 毕天姝, 等. 基于同步相量数据的间谐波还原算法[J]. 电力自动化设备, 2019, 39(1): 153–160 LIU Hao, XU Sudi, BI Tianshu, et al. Inter-harmonic reduction algorithm based on synchrophasor measurements[J]. Electric Power Automation Equipment, 2019, 39(1): 153–160 [21] ZHANG F, CHENG L, GAO W Z, et al. Synchrophasors-based identification for subsynchronous oscillations in power systems[J]. IEEE Transactions on Smart Grid, 2019, 10(2): 2224–2233. [22] 马钺, 蔡东升, 黄琦. 基于Rife-Vincent窗和同步相量测量数据的风电次同步振荡参数辨识[J]. 中国电机工程学报, 2021, 41(3): 790–803 MA Yue, CAI Dongsheng, HUANG Qi. Parameter identification of wind power sub-synchronous oscillation based on Rife-Vincent window and synchrophasor data[J]. Proceedings of the CSEE, 2021, 41(3): 790–803 [23] LIU H K, XIE X R, HE J B, et al. Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4708–4720. [24] 马宁宁, 谢小荣, 亢朋朋, 等. 高比例风电并网系统次同步振荡的广域监测与分析[J]. 中国电机工程学报, 2021, 41(1): 65–74, 398 MA Ningning, XIE Xiaorong, KANG Pengpeng, et al. Wide-area monitoring and analysis of subsynchronous oscillation in power systems with high-penetration of wind power[J]. Proceedings of the CSEE, 2021, 41(1): 65–74, 398 [25] WANG L, XIE X R, JIANG Q R, et al. Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system[J]. IEEE Transactions on Power Systems, 2015, 30(5): 2772–2779. [26] ZHANG Q S, WANG X, WU Y N, et al. Interpretable CNNs for object classification[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(10): 3416–3431. [27] LU L Q, YI Y H, HUANG F L, et al. Integrating local CNN and global CNN for script identification in natural scene images[J]. IEEE Access, 2019, 7: 52669–52679. [28] LI G F, TANG H, SUN Y, et al. Hand gesture recognition based on convolution neural network[J]. Cluster Computing, 2019, 22(2): 2719–2729. [29] HU J, SHEN L, SUN G. Squeeze-and-excitation networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 7132–7141. [30] ZHANG M, SU H H, WEN J H. Classification of flower image based on attention mechanism and multi-loss attention network[J]. Computer Communications, 2021, 179: 307–317. [31] WOO S, PARK J, LEE J Y, et al. CBAM: Convolutional Block Attention Module[C]//European Conference on Computer Vision. Cham: Springer, 2018: 3–19. |