中国电力 ›› 2025, Vol. 58 ›› Issue (5): 33-42.DOI: 10.11930/j.issn.1004-9649.202403063
• 面向新型配电系统的人工智能与新能源技术 • 上一篇 下一篇
沈鑫1(), 王钢2, 赵毅涛1, 骆钊2(
), 李钊2, 杨晓华1
收稿日期:
2024-03-18
发布日期:
2025-05-30
出版日期:
2025-05-28
作者简介:
基金资助:
SHEN Xin1(), WANG Gang2, ZHAO Yitao1, LUO Zhao2(
), LI Zhao2, YANG Xiaohua1
Received:
2024-03-18
Online:
2025-05-30
Published:
2025-05-28
Supported by:
摘要:
随着智能电表的普及,电网信息化、数字化水平逐渐提高,需求侧的非侵入式负荷监测(non-intrusive load monitoring,NILM)逐渐成为供电企业实现能效提升的关键技术。针对目前非侵入式负荷识别算法存在特征冗余度、计算开销大、识别性能差等问题,提出一种融合压缩-激励网络(squeeze and excitation networks,SENet)注意力机制和基于遗传算法优化卷积神经网络(genetic algorithms-convolutional neural network,GA-CNN)的非侵入式负荷识别方法。首先,将SENet注意力机制嵌入CNN,提高关键特征的表征能力,降低特征冗余度;其次,提取居民负荷U-I轨迹图,对其进行加权像素化处理,通过计算得到WVI(weighted pixelated VI)特征矩阵,并以此为特征参量训练SENet-CNN模型;最后,利用遗传算法优化SENet-CNN模型的超参数,提高模型负荷识别性能和计算效率。实验结果表明,所提方法能够降低非侵入式负荷识别计算开销,准确识别出居民负荷类别,显著提升非侵入式负荷识别效率。
沈鑫, 王钢, 赵毅涛, 骆钊, 李钊, 杨晓华. 融合SENet注意力机制和GA-CNN的非侵入式负荷识别方法[J]. 中国电力, 2025, 58(5): 33-42.
SHEN Xin, WANG Gang, ZHAO Yitao, LUO Zhao, LI Zhao, YANG Xiaohua. A Non-invasive Load Recognition Approach Incorporating SENet Attention Mechanism and GA-CNN[J]. Electric Power, 2025, 58(5): 33-42.
特征分类 | 特征名称 | 特征说明 | 优点 | 缺点 | ||||
稳态特征 | 稳态变化量 | 稳态电流、电压、功率的变化量 | 大功率负荷容易识别;采样率要求低 | 小功率负荷难以识别;对有限状态型、状态连续可变型设备识别精度不高 | ||||
U-I轨迹 | U-I轨迹的波形特征:循环方向、自交点数量、曲线的非线性等 | 存在差异性的U-I轨迹可以实现对不同设备类型的精细识别 | 小功率负荷容易出现U-I轨迹的波形特征重叠 | |||||
时域-频域信息 | 稳态时电流有效值、峰峰值、谐波含有率等 | 容易从阻性、感性、容性的角度区分设备类别 | 采样率要求高,部分开关型、有限状态型设备存在特征重叠 | |||||
暂态特征 | 暂态变化量 | 设备状态切换时电流、功率峰值、暂态响应时间 | 对瞬态特征明显的设备识别精度高,例如开关型、有限状态型设备 | 不适用于状态连续可变型设备的识别 | ||||
电压噪声 | 对电压噪声高频采样,并进行傅里叶变换 | 对有限状态型、状态连续可变型设备识别精度较高 | 数据预处理存在困难,且计算开销较大 |
表 1 部分负荷特征总结对比
Table 1 Summary and comparison of partial load characteristics
特征分类 | 特征名称 | 特征说明 | 优点 | 缺点 | ||||
稳态特征 | 稳态变化量 | 稳态电流、电压、功率的变化量 | 大功率负荷容易识别;采样率要求低 | 小功率负荷难以识别;对有限状态型、状态连续可变型设备识别精度不高 | ||||
U-I轨迹 | U-I轨迹的波形特征:循环方向、自交点数量、曲线的非线性等 | 存在差异性的U-I轨迹可以实现对不同设备类型的精细识别 | 小功率负荷容易出现U-I轨迹的波形特征重叠 | |||||
时域-频域信息 | 稳态时电流有效值、峰峰值、谐波含有率等 | 容易从阻性、感性、容性的角度区分设备类别 | 采样率要求高,部分开关型、有限状态型设备存在特征重叠 | |||||
暂态特征 | 暂态变化量 | 设备状态切换时电流、功率峰值、暂态响应时间 | 对瞬态特征明显的设备识别精度高,例如开关型、有限状态型设备 | 不适用于状态连续可变型设备的识别 | ||||
电压噪声 | 对电压噪声高频采样,并进行傅里叶变换 | 对有限状态型、状态连续可变型设备识别精度较高 | 数据预处理存在困难,且计算开销较大 |
编号 | 负荷类型 | 样本数量 | ||||
训练集 | 测试集 | |||||
1 | 电烤箱 | 33 | 8 | |||
2 | 电水壶 | 99 | 25 | |||
3 | 定频空调 | 181 | 45 | |||
4 | 变频空调 | 204 | 51 | |||
5 | 电磁炉 | 123 | 31 | |||
6 | 微波炉 | 95 | 24 |
表 2 居民负荷数据集具体分布
Table 2 Specific distribution of residential load samples
编号 | 负荷类型 | 样本数量 | ||||
训练集 | 测试集 | |||||
1 | 电烤箱 | 33 | 8 | |||
2 | 电水壶 | 99 | 25 | |||
3 | 定频空调 | 181 | 45 | |||
4 | 变频空调 | 204 | 51 | |||
5 | 电磁炉 | 123 | 31 | |||
6 | 微波炉 | 95 | 24 |
模型 | 评价指标/% | |||||||
Ac | Pr | Re | f1 | |||||
SVM | 75.1 | 74.2 | 78.6 | 76.3 | ||||
Adaboost | 93.4 | 93.7 | 94.1 | 93.9 | ||||
HMM | 67.5 | 68.6 | 72.5 | 70.5 | ||||
CNN | 88.3 | 89.6 | 95.3 | 92.4 | ||||
CNN-SENet | 95.1 | 95.3 | 91.9 | 93.1 |
表 3 实验结果对比
Table 3 Comparison of experimental results
模型 | 评价指标/% | |||||||
Ac | Pr | Re | f1 | |||||
SVM | 75.1 | 74.2 | 78.6 | 76.3 | ||||
Adaboost | 93.4 | 93.7 | 94.1 | 93.9 | ||||
HMM | 67.5 | 68.6 | 72.5 | 70.5 | ||||
CNN | 88.3 | 89.6 | 95.3 | 92.4 | ||||
CNN-SENet | 95.1 | 95.3 | 91.9 | 93.1 |
编号 | 实验对象 | 评价指标/% | ||||||||
Ac | Pr | Re | f1 | |||||||
1 | CNN | 57.0 | 56.1 | 56.3 | 56.2 | |||||
CNN-SENet | 84.3 | 97.6 | 69.5 | 81.2 | ||||||
2 | CNN | 78.6 | 79.0 | 83.3 | 81.1 | |||||
CNN-SENet | 85.2 | 88.4 | 96.5 | 92.2 | ||||||
3 | CNN | 96.8 | 95.9 | 99.1 | 97.5 | |||||
CNN-SENet | 98.4 | 99.8 | 97.6 | 98.7 | ||||||
4 | CNN | 92.1 | 93.3 | 99.4 | 96.3 | |||||
CNN-SENet | 95.7 | 96.5 | 96.3 | 96.4 | ||||||
5 | CNN | 89.2 | 88.8 | 98.7 | 93.5 | |||||
CNN-SENet | 93.5 | 94.4 | 97.1 | 95.7 | ||||||
6 | CNN | 92.6 | 92.0 | 96.3 | 94.1 | |||||
CNN-SENet | 94.4 | 95.1 | 94.2 | 94.6 | ||||||
总计 | CNN | 90.3 | 89.6 | 95.3 | 92.4 | |||||
CNN-SENet | 95.1 | 95.3 | 91.9 | 93.1 |
表 4 负荷详细识别结果
Table 4 Detailed load identification results
编号 | 实验对象 | 评价指标/% | ||||||||
Ac | Pr | Re | f1 | |||||||
1 | CNN | 57.0 | 56.1 | 56.3 | 56.2 | |||||
CNN-SENet | 84.3 | 97.6 | 69.5 | 81.2 | ||||||
2 | CNN | 78.6 | 79.0 | 83.3 | 81.1 | |||||
CNN-SENet | 85.2 | 88.4 | 96.5 | 92.2 | ||||||
3 | CNN | 96.8 | 95.9 | 99.1 | 97.5 | |||||
CNN-SENet | 98.4 | 99.8 | 97.6 | 98.7 | ||||||
4 | CNN | 92.1 | 93.3 | 99.4 | 96.3 | |||||
CNN-SENet | 95.7 | 96.5 | 96.3 | 96.4 | ||||||
5 | CNN | 89.2 | 88.8 | 98.7 | 93.5 | |||||
CNN-SENet | 93.5 | 94.4 | 97.1 | 95.7 | ||||||
6 | CNN | 92.6 | 92.0 | 96.3 | 94.1 | |||||
CNN-SENet | 94.4 | 95.1 | 94.2 | 94.6 | ||||||
总计 | CNN | 90.3 | 89.6 | 95.3 | 92.4 | |||||
CNN-SENet | 95.1 | 95.3 | 91.9 | 93.1 |
应用场景 | 设备 | 评价指标/% | ||||||||
Ac | Pr | Re | f1 | |||||||
场景1 | 电水壶 | 90.3 | 97.5 | 91.8 | 94.5 | |||||
热水器 | 90.9 | 98.7 | 91.5 | 94.9 | ||||||
电磁炉 | 89.0 | 93.2 | 94.5 | 93.9 | ||||||
场景2 | 电风扇 | 88.6 | 97.1 | 90.4 | 93.6 | |||||
吸尘器 | 87.7 | 96.3 | 90.8 | 93.5 | ||||||
空调 | 86.7 | 95.3 | 89.7 | 92.4 | ||||||
场景3 | 电磁炉+冰箱 | 84.5 | 96.5 | 85.6 | 90.7 | |||||
白炽灯+空调 | 86.5 | 97.3 | 87.8 | 92.3 | ||||||
笔记本+电水壶 | 82.1 | 92.8 | 86.5 | 89.5 | ||||||
场景4 | 电水壶+冰箱+电风扇 | 80.9 | 81.2 | 85.6 | 88.3 | |||||
空调+笔记本+冰箱 | 79.3 | 92.4 | 83.6 | 87.8 |
表 5 不同应用场景负荷识别结果
Table 5 Results for different application scenarios
应用场景 | 设备 | 评价指标/% | ||||||||
Ac | Pr | Re | f1 | |||||||
场景1 | 电水壶 | 90.3 | 97.5 | 91.8 | 94.5 | |||||
热水器 | 90.9 | 98.7 | 91.5 | 94.9 | ||||||
电磁炉 | 89.0 | 93.2 | 94.5 | 93.9 | ||||||
场景2 | 电风扇 | 88.6 | 97.1 | 90.4 | 93.6 | |||||
吸尘器 | 87.7 | 96.3 | 90.8 | 93.5 | ||||||
空调 | 86.7 | 95.3 | 89.7 | 92.4 | ||||||
场景3 | 电磁炉+冰箱 | 84.5 | 96.5 | 85.6 | 90.7 | |||||
白炽灯+空调 | 86.5 | 97.3 | 87.8 | 92.3 | ||||||
笔记本+电水壶 | 82.1 | 92.8 | 86.5 | 89.5 | ||||||
场景4 | 电水壶+冰箱+电风扇 | 80.9 | 81.2 | 85.6 | 88.3 | |||||
空调+笔记本+冰箱 | 79.3 | 92.4 | 83.6 | 87.8 |
1 | 冀肖彤, 杨东俊, 方仍存, 等. “双碳” 目标下未来配电网构建思考与展望[J]. 电力建设, 2024, 45 (2): 37- 48. |
JI Xiaotong, YANG Dongjun, FANG Rengcun, et al. Research and prospect of future distribution network construction under dual carbon target[J]. Electric Power Construction, 2024, 45 (2): 37- 48. | |
2 | 王金丽, 李丰胜, 解芳, 等. “双碳” 战略背景下新型配电系统技术标准体系[J]. 中国电力, 2023, 56 (5): 22- 31. |
WANG Jinli, LI Fengsheng, XIE Fang, et al. Research on technical standard system of new distribution system under double-carbon strategy[J]. Electric Power, 2023, 56 (5): 22- 31. | |
3 |
PAMULAPATI T, MALLIPEDDI R, LEE M. Multi-objective home appliance scheduling with implicit and interactive user satisfaction modelling[J]. Applied energy, 2020, 267, 114690.
DOI |
4 |
HART G W. Nonintrusive appliance load monitoring[J]. Proceedings of the IEEE, 1992, 80 (12): 1870- 1891.
DOI |
5 |
邓旭晖, 陈中, 杨凯, 等. 基于多任务学习卷积网络的非侵入式负荷监测方法[J]. 电力系统自动化, 2023, 47 (8): 189- 197.
DOI |
DENG Xuhui, CHEN Zhong, YANG Kai, et al. Non-intrusive load monitoring method based on multi-task learning convolutional network[J]. Automation of Electric Power Systems, 2023, 47 (8): 189- 197.
DOI |
|
6 | 孙毅, 李昊洋, 刘耀先, 等. 基于改进隐马尔科夫模型的非侵入式家居负荷识别[J]. 电力建设, 2020, 41 (4): 73- 80. |
SUN Yi, LI Haoyang, LIU Yaoxian, et al. Non-intrusive home-load identification based on improved hidden Markov model[J]. Electric Power Construction, 2020, 41 (4): 73- 80. | |
7 | NIDA U I, SHAHID M S. A low complexity binary-weighted energy disaggregation framework for residential electricity consumption[J]. Energy & Buildings, 2023, 298, 113553. |
8 | 王以良, 周鹏, 叶卫等. 基于金字塔网络的非侵入式负荷辨识及其隐私保护方案[J]. 计算机工程, 2024, 50 (5): 182- 189. |
WANG Yiliang, ZHOU Peng, YE Wei, et al. Non-intrusive load monitoring and its privacy-preserving scheme based on pyramid network[J]. Computer Engineering, 2024, 50 (5): 182- 189. | |
9 |
OUZINE J, MARZOUQ M, DOSSE BENNANI S, et al. New hybrid deep learning models for multi-target NILM disaggregation[J]. Energy Efficiency, 2023, 16 (7): 82.
DOI |
10 | 张安安, 庄景泰, 郭红鼎, 等. 结合图半监督与广义回归神经网络的非侵入式海洋平台负荷监测[J]. 电力系统保护与控制, 2020, 48 (7): 85- 91. |
ZHANG Anan, ZHUANG Jingtai, GUO Hongding, et al. Non-intrusive offshore platform load monitoring based on graph-based semi-supervised learning and generalized regression neural networks[J]. Power System Protection and Control, 2020, 48 (7): 85- 91. | |
11 |
KONG W C, DONG Z Y, MA J, et al. An extensible approach for non-intrusive load disaggregation with smart meter data[J]. IEEE Transactions on Smart Grid, 2018, 9 (4): 3362- 3372.
DOI |
12 | 孙毅, 张璐, 赵洪磊, 等. 基于动态自适应粒子群算法的非侵入式家居负荷分解方法[J]. 电网技术, 2018, 42 (6): 1819- 1826. |
SUN Yi, ZHANG Lu, ZHAO Honglei, et al. A non-intrusive household load monitoring method based on dynamic adaptive particle swarm optimization algorithm[J]. Power System Technology, 2018, 42 (6): 1819- 1826. | |
13 |
刘赛, 刘宇, 高山, 等. 基于多特征目标函数PCA-ILP的非侵入式负荷分解方法[J]. 电力建设, 2020, 41 (8): 1- 8.
DOI |
LIU Sai, LIU Yu, GAO Shan, et al. Non-intrusive load monitoring method based on PCA-ILP considering multi-feature objective function[J]. Electric Power Construction, 2020, 41 (8): 1- 8.
DOI |
|
14 | HU S, YUAN G, HU K, LIU C, WU M. Non-intrusive load identification method based on KPCA-IGWO-RF[J]. Energies, 2023, 16 (12): 4805. |
15 |
仝瑞宁, 李鹏, 郎恂, 等. 基于Fisher主元分析和核极限学习机的非侵入式电力负荷辨识模型[J]. 电力建设, 2021, 42 (2): 85- 92.
DOI |
TONG Ruining, LI Peng, LANG Xun, et al. Non-intrusive power load identification model based on FPCA and KELM[J]. Electric Power Construction, 2021, 42 (2): 85- 92.
DOI |
|
16 |
庄卫金, 张鸿, 方国权, 等. 基于设备运行状态挖掘的非侵入式负荷分解方法[J]. 电力建设, 2020, 41 (8): 9- 16.
DOI |
ZHUANG Weijin, ZHANG Hong, FANG Guoquan, et al. Non-intrusive load disaggregation method based on the mining of equipment operating states[J]. Electric Power Construction, 2020, 41 (8): 9- 16.
DOI |
|
17 | 徐青山, 娄藕蝶, 郑爱霞, 等. 基于近邻传播聚类和遗传优化的非侵入式负荷分解方法[J]. 电工技术学报, 2018, 33 (16): 3868- 3878. |
XU Qingshan, LOU Oudie, ZHENG Aixia, et al. A non-intrusive load decomposition method based on affinity propagation and genetic algorithm optimization[J]. Transactions of China Electrotechnical Society, 2018, 33 (16): 3868- 3878. | |
18 | MEI H W, LIU Y P, CAO W B, et al. A mother-son model for multi-objective non-invasive load monitoring[J]. Energy & Buildings, 2023, 300, 113669. |
19 | 刘一铭, 李惠民, 王乐挺, 等. 基于卷积神经网络的非侵入式负荷监测方法[J]. 电测与仪表, 2022, 59 (1): 148- 154. |
LIU Yiming, LI Huimin, WANG Leting, et al. Non-intrusive load monitoring method based on convolutional neural network[J]. Electrical Measurement & Instrumentation, 2022, 59 (1): 148- 154. | |
20 | 郭红霞, 陆进威, 杨苹, 等. 非侵入式负荷监测关键技术问题研究综述[J]. 电力自动化设备, 2021, 41 (1): 135- 146. |
GUO Hongxia, LU Jinwei, YANG Ping, et al. Review on key techniques of non-intrusive load monitoring[J]. Electric Power Automation Equipment, 2021, 41 (1): 135- 146. | |
21 |
严萌, 于雅雯, 王玲静, 等. 基于多特征联合稀疏表达的SOM-K-means非侵入负荷辨识[J]. 电力建设, 2023, 44 (5): 61- 71.
DOI |
YAN Meng, YU Yawen, WANG Lingjing, et al. SOM-K-means non-intrusive load identification based on multi feature joint sparse expression[J]. Electric Power Construction, 2023, 44 (5): 61- 71.
DOI |
|
22 | 孔志伟. 面向家庭用户的非侵入式负荷监测方法研究[D]. 济南: 山东建筑大学, 2023. |
KONG Zhiwei. Research on non-intrusive load monitoring method for household users[D]. Jinan: Shandong Jianzhu University, 2023. | |
23 |
鲍海波, 杨舒惠, 陈子民, 等. 事件检测类非侵入式负荷监测算法综述[J]. 电力系统自动化, 2023, 47 (13): 94- 109.
DOI |
BAO Haibo, YANG Shuhui, CHEN Zimin, et al. Review on event-inspection based non-intrusive load monitoring algorithms[J]. Automation of Electric Power Systems, 2023, 47 (13): 94- 109.
DOI |
|
24 |
陈池瑶, 苗世洪, 殷浩然, 等. 基于注意力机制-卷积神经网络的配电网单相接地故障选线方法[J]. 电力建设, 2023, 44 (4): 82- 93.
DOI |
CHEN Chiyao, MIAO Shihong, YIN Haoran, et al. Single-phase grounding-fault line selection method based on attention mechanism-convolution neural network for distribution network[J]. Electric Power Construction, 2023, 44 (4): 82- 93.
DOI |
|
25 |
KONG Z Q, TANG B P, DENG L, et al. Condition monitoring of wind turbines based on spatio-temporal fusion of SCADA data by convolutional neural networks and gated recurrent units[J]. Renewable Energy, 2020, 146, 760- 768.
DOI |
26 | ZAI Z P, ZHAO S, ZHANG Z J, et al. Non-intrusive load monitoring based on the combination of gate-transformer and CNN[J]. Electronics, 2023, 12(13). |
27 | 张晓萱, 薛松, 许野, 等. 考虑可调节负荷减碳降碳价值的需求响应运行决策模型[J]. 中国电力, 2024, 57 (11): 151- 160. |
ZHANG Xiaoxuan, XUE Song, XU Ye, et al. Operational decision model for demand response considering carbon reduction value of adjustable loads[J]. Electric Power, 2024, 57 (11): 151- 160. | |
28 |
DE BAETS L, RUYSSINCK J, DEVELDER C, et al. Appliance classification using VI trajectories and convolutional neural networks[J]. Energy and Buildings, 2018, 158, 32- 36.
DOI |
29 | ALTRABALSI H, LIAO J, STANKOVIC L, et al. A low-complexity energy disaggregation method: performance and robustness[C]//2014 IEEE Symposium on Computational Intelligence Applications in Smart Grid (CIASG). Orlando, FL, USA. IEEE, 2014: 1–8. |
[1] | 李鹏, 祖文静, 刘一欣, 田春筝, 郝元钊, 李慧璇. 基于不完全量测数据的配电网状态估计方法[J]. 中国电力, 2025, 58(5): 1-10. |
[2] | 吴军英, 路欣, 刘宏, 张彬, 柴守亮, 刘蕴春, 王佳楠. 基于Spearman-GCN-GRU模型的超短期多区域电力负荷预测[J]. 中国电力, 2024, 57(6): 131-140. |
[3] | 娄奇鹤, 李荣盛, 谭捷, 袁铁江. 基于卷积神经网络的暂稳极限功率计算[J]. 中国电力, 2024, 57(4): 211-219. |
[4] | 周颖, 白雪峰, 王阳, 邱敏, 孙冲, 武亚杰, 李彬. 面向虚拟电厂运营的温度敏感负荷分析与演变趋势研判[J]. 中国电力, 2024, 57(1): 9-17. |
[5] | 王大兴, 宁妍, 汪敬培, 徐洋, 毕峻, 周铭标, 王鹏. 构建新型电力系统背景下的微电网鲁棒简化建模[J]. 中国电力, 2024, 57(1): 148-157. |
[6] | 皮志勇, 朱益, 廖玄, 李振兴, 方豪, 吴沛. 基于深度学习的智能变电站通信链路故障定位方法[J]. 中国电力, 2023, 56(7): 136-145. |
[7] | 陆友文, 崔昊, 陈佳宁, 彭祥佳, 冯双, 刘栋. 基于RA-CNN和同步相量的风电场次/超同步振荡参数智能辨识方法[J]. 中国电力, 2023, 56(4): 46-55,67. |
[8] | 武小琳, 栾凌, 潘连武, 李海龙. 基于LM-CNN的输变电工程造价自动计算模型[J]. 中国电力, 2023, 56(2): 157-163. |
[9] | 陈子含, 滕伟, 胥学峰, 丁显, 柳亦兵. 基于图卷积网络和风速差分拟合的中长期风功率预测[J]. 中国电力, 2023, 56(10): 96-105. |
[10] | 冯裕祺, 李辉, 李利娟, 周彦博, 谭貌, 彭寒梅. 基于CNN-GRU的光伏电站电压轨迹预测[J]. 中国电力, 2022, 55(7): 163-171. |
[11] | 沙骏, 徐雨森, 刘冲冲, 冯定东, 胥峥, 臧海祥. 基于变分模态分解和分位数卷积-循环神经网络的短期风功率预测[J]. 中国电力, 2022, 55(12): 61-68. |
[12] | 樊江川, 于昊正, 刘慧婷, 杨丽君, 安佳坤. 基于多分支门控残差卷积神经网络的短期电力负荷预测[J]. 中国电力, 2022, 55(11): 155-162,174. |
[13] | 杨胡萍, 余阳, 汪超, 李向军, 胡奕涛, 饶楚楚. 基于VMD-CNN-BIGRU的电力系统短期负荷预测[J]. 中国电力, 2022, 55(10): 71-76. |
[14] | 曾囿钧, 肖先勇, 徐方维, 郑林. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9): 17-23. |
[15] | 徐浩, 刘利强, 吕超. 基于迁移学习的配电网内部过电压识别方法[J]. 中国电力, 2021, 54(8): 52-59. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||