中国电力 ›› 2022, Vol. 55 ›› Issue (10): 71-76.DOI: 10.11930/j.issn.1004-9649.202206097

• 电网 • 上一篇    下一篇

基于VMD-CNN-BIGRU的电力系统短期负荷预测

杨胡萍1, 余阳2, 汪超1, 李向军3, 胡奕涛1, 饶楚楚1   

  1. 1. 南昌大学 信息工程学院,江西 南昌 330031;
    2. 广东电网有限责任公司肇庆供电局,广东 肇庆 526040;
    3. 南昌大学 软件学院,江西 南昌 330031
  • 收稿日期:2022-06-22 修回日期:2022-09-02 发布日期:2022-10-20
  • 作者简介:杨胡萍(1964—),女,教授,硕士生导师,从事电力系统继电保护与控制研究,E-mail:yhping123@163.com;余阳(1993—),男,硕士研究生,从事电力系统短期负荷预测研究,E-mail:18720920217@sina.cn;汪超(1997—),男,通信作者,硕士研究生,从事电力系统保护与控制研究,E-mail:1071327846@qq.com;李向军(1972—),男,教授,从事网络空间安全、人工智能和数据挖掘研究,E-mail:lixiangjun@ncu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61862042);国网江西省电力有限公司南昌市昌北供电分公司科技项目(CX202105280048)。

Short-Term Load Forecasting of Power System Based on VMD-CNN-BIGRU

YANG Huping1, YU Yang2, WANG Chao1, LI Xiangjun3, HU Yitao1, RAO Chuchu1   

  1. 1. School of Information Engineering, Nanchang University, Nanchang 330031, China;
    2. Zhaoqing Power Supply Bureau of Guangdong Power Grid Co., Ltd., Zhaoqing 526040 , China;
    3. School of Software, Nanchang University, Nanchang 330031, China
  • Received:2022-06-22 Revised:2022-09-02 Published:2022-10-20
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.61862042) and Science & Technology Project of State Grid Jiangxi Electric Power Co., Ltd. Nanchang Changbei Power Supply Branch (No.CX202105280048).

摘要: 为提高负荷预测精度,考虑了历史负荷本身内在规律及外部影响因素,提出一种基于变分模态分解(variational modal decomposition,VMD) –卷积神经网络(convolutional neural networks,CNN) –双向门控循环单元(bi-directional gated recurrent unit,BIGRU)混合网络的短期负荷预测方法,改善了训练时长和预测效果。通过仿真分析验证了所提方法的有效性,且该方法与其他模型相比有更高的负荷预测精度和更强的鲁棒性,能够提高电力系统短期负荷预测的精确度。

关键词: 短期负荷预测, 变分模态分解, 卷积神经网络, 双向门控循环单元

Abstract: In order to improve the accuracy of load prediction, taking into account the internal laws and external influencing factors of historical load itself, a kind of variational modal decomposition (VMD) -convolutional neural networks (CNN) -bi-directional gated recurrent units are proposed. BIGRU) short-term load prediction method for hybrid networks, improving training duration and prediction results. The effectiveness of the proposed method is verified by simulation analysis, and the method has higher load prediction accuracy and stronger robustness than other models, which can improve the accuracy of short-term load prediction of power system.

Key words: short load forecasting, variational modal decomposition, convolutional neural network, bi-directional gated recurrent unit