中国电力 ›› 2024, Vol. 57 ›› Issue (6): 18-26.DOI: 10.11930/j.issn.1004-9649.202401003
收稿日期:
2024-01-02
出版日期:
2024-06-28
发布日期:
2024-06-25
作者简介:
朱沐雨(2000—),男,硕士研究生,从事电化学储能安全技术研究,E-mail:962307019@qq.com基金资助:
Muyu ZHU1(), Hongzhong MA1(
), Pengyu GUO2(
), Wenjing XUAN1
Received:
2024-01-02
Online:
2024-06-28
Published:
2024-06-25
Supported by:
摘要:
针对储能电池组在电网典型储能工况下荷电状态(state of charge,SOC)估算精度较低的问题,提出一种基于核主成分分析(kernel principal component analysis,KPCA)-鹈鹕优化(pelican optimization algorithm,POA)-双向门控循环单元(bidirectional gated recurrent unit,BiGRU)的SOC估计模型。通过设计调峰/调频工况下电池组充放电实验,从数据中提取表征SOC变化的融合特征作为模型输入;分别构建不同工况下BiGRU网络,并利用POA对其超参数进行优化,提高模型性能;进一步在混合工况下验证模型的有效性。结果表明,所建模型有着更好的SOC估计效果和更强的鲁棒性,能够提高复杂储能工况下储能电池组SOC估计精度。
朱沐雨, 马宏忠, 郭鹏宇, 宣文婧. 典型调峰/调频工况下储能电池组荷电状态估计[J]. 中国电力, 2024, 57(6): 18-26.
Muyu ZHU, Hongzhong MA, Pengyu GUO, Wenjing XUAN. State of Charge Estimation of Energy Storage Battery Pack under Typical Peak/Frequency Modulation Conditions[J]. Electric Power, 2024, 57(6): 18-26.
型号 | 标称电压/V | 标称容量/(A·h) | ||
MCRSA08-LC | 25.6 | 220 | ||
电池组尺寸/mm | 工作温度/℃ | 质量/kg | ||
555×430×154 | –20~55 | 60 |
表 1 电池组参数
Table 1 Battery pack parameters
型号 | 标称电压/V | 标称容量/(A·h) | ||
MCRSA08-LC | 25.6 | 220 | ||
电池组尺寸/mm | 工作温度/℃ | 质量/kg | ||
555×430×154 | –20~55 | 60 |
工况 | 是否降维 | ERMS | EMA | R2 | ||||
调峰 | 是 | 0.008645 | 0.008527 | 0.9987 | ||||
否 | 0.033260 | 0.022370 | 0.9406 | |||||
调频 | 是 | 0.009983 | 0.010410 | 0.9930 | ||||
否 | 0.061020 | 0.047480 | 0.7753 |
表 2 不同输入特征下误差评估指标
Table 2 Error evaluation indexes of different input characteristics
工况 | 是否降维 | ERMS | EMA | R2 | ||||
调峰 | 是 | 0.008645 | 0.008527 | 0.9987 | ||||
否 | 0.033260 | 0.022370 | 0.9406 | |||||
调频 | 是 | 0.009983 | 0.010410 | 0.9930 | ||||
否 | 0.061020 | 0.047480 | 0.7753 |
工况 | 模型 | ERMS | EMA | R2 | ||||
调峰 | POA-BiGRU | 0.008645 | 0.008527 | 0.9987 | ||||
KELM | 0.024090 | 0.019680 | 0.9654 | |||||
BiLSTM | 0.011050 | 0.012310 | 0.9892 | |||||
BiGRU | 0.011360 | 0.012440 | 0.9875 | |||||
调频 | POA-BiGRU | 0.009983 | 0.010410 | 0.9930 | ||||
KELM | 0.037650 | 0.022560 | 0.9532 | |||||
BiLSTM | 0.015780 | 0.011020 | 0.9785 | |||||
BiGRU | 0.016620 | 0.012330 | 0.9771 |
表 3 不同学习模型下误差评估指标
Table 3 Error evaluation indexes with different learning models
工况 | 模型 | ERMS | EMA | R2 | ||||
调峰 | POA-BiGRU | 0.008645 | 0.008527 | 0.9987 | ||||
KELM | 0.024090 | 0.019680 | 0.9654 | |||||
BiLSTM | 0.011050 | 0.012310 | 0.9892 | |||||
BiGRU | 0.011360 | 0.012440 | 0.9875 | |||||
调频 | POA-BiGRU | 0.009983 | 0.010410 | 0.9930 | ||||
KELM | 0.037650 | 0.022560 | 0.9532 | |||||
BiLSTM | 0.015780 | 0.011020 | 0.9785 | |||||
BiGRU | 0.016620 | 0.012330 | 0.9771 |
模型 | ERMS | EMA | R2 | |||
单模型 | 0.02872 | 0.025460 | 0.9755 | |||
双模型 | 0.01097 | 0.009862 | 0.9936 |
表 4 混合工况下误差评估指标
Table 4 Error evaluation indexes under mixed conditions
模型 | ERMS | EMA | R2 | |||
单模型 | 0.02872 | 0.025460 | 0.9755 | |||
双模型 | 0.01097 | 0.009862 | 0.9936 |
1 |
HIRSCH A, PARAG Y, GUERRERO J. Microgrids: a review of technologies, key drivers, and outstanding issues[J]. Renewable and Sustainable Energy Reviews, 2018, 90, 402- 411.
DOI |
2 | 岳家辉, 夏向阳, 蒋戴宇, 等. 基于电压数据片段混合模型的锂离子电池剩余寿命预测与健康状态估计[J]. 中国电力, 2023, 56 (7): 163- 174. |
YUE Jiahui, XIA Xiangyang, JIANG Daiyu, et al. Remaining useful life prediction and state of health estimation of lithium-ion batteries based on voltage data segment hybrid model[J]. Electric Power, 2023, 56 (7): 163- 174. | |
3 | 杨启帆, 马宏忠, 刘宝稳, 等. 锂离子电池气体故障特性分析及诊断方法[J]. 高电压技术, 2021, 47 (9): 3315- 3330. |
YANG Qifan, MA Hongzhong, LIU Baowen, et al. Gas fault characteristics analysis and diagnosis method of lithium-ion battery[J]. High Voltage Engineering, 2021, 47 (9): 3315- 3330. | |
4 |
XI Z M, WANG R, FU Y H, et al. Accurate and reliable state of charge estimation of lithium ion batteries using time-delayed recurrent neural networks through the identification of overexcited neurons[J]. Applied Energy, 2022, 305, 117962.
DOI |
5 | 曹钰, 姜彤, 刘炽, 等. 考虑频率特性及储能电池状态的电化学储能参与一次调频控制策略[J]. 储能科学与技术, 2023, 12 (10): 3120- 3130. |
CAO Yu, JIANG Tong, LIU Chi, et al. Electrochemical energy storage participation in primary frequency regulation control strategy considering frequency characteristics and energy storage battery state[J]. Energy Storage Science and Technology, 2023, 12 (10): 3120- 3130. | |
6 | 张力菠, 王格格. 电化学储能电池技术主题识别、演化及风险分析[J]. 储能科学与技术, 2023, 12 (8): 2680- 2692. |
ZHANG Libo, WANG Gege. Topic identification, evolution, and risk analysis of electrochemical energy storage battery technology[J]. Energy Storage Science and Technology, 2023, 12 (8): 2680- 2692. | |
7 | 黄晓凡, 李佳瑞, 秦玉文, 等. 基于多尺度CNN和残差LSTM网络的储能电站SOC估计[J/OL]. 电源学报: 1–12[2024-04-08]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231023.1653.014.html. |
HUANG Xiaofan, LI Jiarui, QIN Yuwen, et al. A Multi-scale CNN and residual LSTM network method for estimating the state of charge in energy storage system[J/OL]. Journal of Power Supply: 1–12[2024-04-08]. http://kns.cnki.net/kcms/detail/12.1420.TM.20231023.1653.014.html. | |
8 |
CHEMALI E, KOLLMEYER P J, PREINDL M, et al. State-of-charge estimation of Li-ion batteries using deep neural networks: a machine learning approach[J]. Journal of Power Sources, 2018, 400, 242- 255.
DOI |
9 | 李晟延, 马鸿雁, 窦嘉铭, 等. 基于PBES-LS-SVM的锂离子电池组SOC预测[J]. 电源技术, 2022, 46 (11): 1279- 1283. |
LI Shenyan , MA Hongyan, DOU Jiaming, et al. SOC prediction of lithium-ion battery pack based on PBES-LS-SVM[J]. Chinese Journal of Power Sources, 2022, 46 (11): 1279- 1283. | |
10 | 于全庆, 王灿, 李建明, 等. 多拓扑结构锂电池组外短路特性分析及模型评价[J]. 机械工程学报, 2023, 59 (6): 159- 172. |
YU Quanqing, WANG Can, LI Jianming, et al. Model evaluation and analysis for multi-topology lithium battery pack external short circuit characteristics[J]. Journal of Mechanical Engineering, 2023, 59 (6): 159- 172. | |
11 |
SHEN J N, HE Y J, MA Z F, et al. Online state of charge estimation of lithium-ion batteries: a moving horizon estimation approach[J]. Chemical Engineering Science, 2016, 154, 42- 53.
DOI |
12 | 杨涛, 文贤馗, 谈竹奎, 等. 面向新型电力系统储能电站的锂电池荷电状态评估方法研究[J/OL]. 电测与仪表: 1–9[2024-04-08]. http://kns.cnki.net/kcms/detail/23.1202.th.20220714.0959.004.html. |
YANG Tao, WEN Xiankui, TAN Zhukui, et al. Research on SOC evaluation method of lithium battery for energy storage station in novel power system[J/OL]. Electrical Measurement & Instrumentation: 1–9[2024-04-08]. http://kns.cnki.net/kcms/detail/23.1202.th.20220714.0959.004.html. | |
13 | 张媛, 夏向阳, 岳家辉, 等. 基于电池簇放电电量的电池堆不一致性在线监测方法[J]. 中国电力, 2023, 56 (7): 207- 215, 227. |
ZHANG Yuan, XIA Xiangyang, YUE Jiahui, et al. Online monitoring method of battery stack inconsistency based on discharge quantity of battery clusters[J]. Electric Power, 2023, 56 (7): 207- 215, 227. | |
14 |
CHEN J X, ZHANG Y, WU J, et al. SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output[J]. Energy, 2023, 262, 125375.
DOI |
15 | 孙玉树, 李宏川, 王波, 等. 电池储能系统SOC神经网络融合估计方法[J]. 湖南大学学报(自然科学版), 2023, 50 (10): 31- 40. |
SUN Yushu, LI Hongchuan, WANG Bo, et al. SOC neural network fusion estimation method for battery energy storage system[J]. Journal of Hunan University (Natural Sciences), 2023, 50 (10): 31- 40. | |
16 | 张英达, 马鸿雁, 窦嘉铭, 等. 基于ISSA-KELM的锂离子电池组SOC预测[J/OL]. 电源学报: 1–13[2024-04-08]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220223.1628.007.html. |
ZHANG Yingda, MA Hongyan, DOU Jiaming et al. SOC prediction of li-ion battery pack based on ISSA-KELM [J/OL]. Journal of Power Supply: 1–13[2024-04-08]. http://kns.cnki.net/kcms/detail/12.1420.TM.20220223.1628.007.html. | |
17 | 赵航, 张旭, 刘欢, 等. 考虑温度影响的可重构式储能系统电池荷电状态的估计[J/OL]. 现代电力: 1–8[2024-04-08].https://doi.org/10.19725/j.cnki.1007-2322.2022.0431. |
ZHAO Hang, ZHANG Xu, LIU Huan, et al. State estimation of the battery state of charge in reconfigurable energy storage systems considering temperature effects[J/OL]. Modern Electric Power: 1–8[2024-04-08].https://doi.org/10.19725/j.cnki.1007-2322.2022.0431. | |
18 | 张瑛, 康永哲, 段彬, 等. 基于数据-模型双驱动的电池组容量在线估计[J/OL]. 机械工程学报: 1–12[2024-04-08]. http://kns.cnki.net/kcms/detail/11.2187.TH.20230428.1431.020.html. |
ZHANG Ying, KANG Yongzhe, DUAN Bin, et al. Online estimation of battery pack capacity based on dual driven method of data and model [J/OL]. Journal of Mechanical Engineering, 1–12[2024-04-08]. http://kns.cnki.net/kcms/detail/11.2187.TH.20230428.1431.020.html. | |
19 | 曹现刚, 叶煜, 赵友军, 等. 基于KPCA-LSTM的旋转机械剩余使用寿命预测[J]. 振动与冲击, 2023, 42 (24): 81- 91. |
CAO Xiangang, YE Yu, ZHAO Youjun, et al. Remaining useful life prediction of rotating machinery based on KPCA-LSTM[J]. Journal of Vibration and Shock, 2023, 42 (24): 81- 91. | |
20 | 杨胡萍, 余阳, 汪超, 等. 基于VMD-CNN-BIGRU的电力系统短期负荷预测[J]. 中国电力, 2022, 55 (10): 71- 76. |
YANG Huping, YU Yang, WANG Chao, et al. Short-term load forecasting of power system based on VMD-CNN-BIGRU[J]. Electric Power, 2022, 55 (10): 71- 76. | |
21 |
TROJOVSKÝ P, DEHGHANI M. Pelican optimization algorithm: a novel nature-inspired algorithm for engineering applications[J]. Sensors, 2022, 22 (3): 855.
DOI |
22 | 倪晋兵, 肖仁军, 孙慧芳, 等. 基于POA-RVM模型的抽蓄机组故障诊断[J/OL]. 人民长江: 1–10[2024-04-08]. http://kns.cnki.net/kcms/detail/42.1202.TV.20231211.1401.004.html. |
NI Jinbing, XIAO Renjun, SUN Huifang, et al. Fault diagnosis of pumped storage unit based on POA-RVM model [J/OL]. Yangtze River, 1–10[2024-04-08]. http://kns.cnki.net/kcms/detail/42.1202.TV.20231211.1401.004.html. | |
23 | 谭必蓉, 杜建华, 叶祥虎, 等. 基于模型的锂离子电池SOC估计方法综述[J]. 储能科学与技术, 2023, 12 (6): 1995- 2010. |
TAN Birong, DU Jianhua, YE Xianghu, et al. Overview of SOC estimation methods for lithium-ion batteries based on model[J]. Energy Storage Science and Technology, 2023, 12 (6): 1995- 2010. |
[1] | 杨胡萍, 余阳, 汪超, 李向军, 胡奕涛, 饶楚楚. 基于VMD-CNN-BIGRU的电力系统短期负荷预测[J]. 中国电力, 2022, 55(10): 71-76. |
[2] | 曾囿钧, 肖先勇, 徐方维, 郑林. 基于CNN-BiGRU-NN模型的短期负荷预测方法[J]. 中国电力, 2021, 54(9): 17-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||