中国电力 ›› 2024, Vol. 57 ›› Issue (6): 27-36.DOI: 10.11930/j.issn.1004-9649.202401029
熊慧敏(), 彭跃中, 何励学, 胡章茂(
), 王唯(
), 田红
收稿日期:
2024-01-07
出版日期:
2024-06-28
发布日期:
2024-06-25
作者简介:
熊慧敏(1999—),女,硕士研究生,从事储能技术和强化传热传质研究,E-mail:xionghuimin09@163.com基金资助:
Huimin XIONG(), Yuezhong PENG, Lixue HE, Zhangmao HU(
), Wei WANG(
), Hong TIAN
Received:
2024-01-07
Online:
2024-06-28
Published:
2024-06-25
Supported by:
摘要:
电池热管理系统(BTMS)是保障储能电池在不同工况下安全高效运行的重要方法。基于相变材料高潜热与热管高导热特性,设计了一种热管耦合相变材料的新型锂离子BTMS,该系统可实现全气候条件下电池保温与散热一体化。采用数值模拟对BTMS的保温与散热性能进行研究。在低温环境下,通过模拟电池放电过程和放电结束后电池温降过程,分析了保温层厚度和初始温度对保温性能的影响;在常温和高温环境下,基于相变材料、热管、双层冷却通道耦合手段提出了相应的散热方案,有效保障了锂离子电池在放电倍率0.5C~2.0C下的安全稳定运行。设计的BTMS可实现不同环境温度下的保温或散热需求,为实现全气候锂离子电池热管理技术提供理论参考。
熊慧敏, 彭跃中, 何励学, 胡章茂, 王唯, 田红. 热管耦合相变材料全气候锂离子电池热管理系统性能分析[J]. 中国电力, 2024, 57(6): 27-36.
Huimin XIONG, Yuezhong PENG, Lixue HE, Zhangmao HU, Wei WANG, Hong TIAN. Thermal Performance Analysis of Novel All-Climate Lithium-Ion Battery Thermal Management System Coupled with Heat Pipes and Phase Change Materials[J]. Electric Power, 2024, 57(6): 27-36.
材料 | 密度/(kg·m–3) | 比热/(J·(g·K)–1) | 导热系数/(W·(m·K)–1) | 动力粘度/(Pa·s) | 热膨胀系数/K–1 | 潜热/(J·kg–1) | 熔化温度/℃ | |||||||
相变材料[ | 814 | 1934.00 | 0.35 | 0.003875 | 0.00091 | 245000 | 27.2~29.2 | |||||||
电池[ | 2751 | 1070.00 | 1.15(径向)23.34(轴向) | |||||||||||
热管 | 400[ | 4000.00[ | 20000 | |||||||||||
保温材料[ | 50 | 1.46 | 0.025 |
表 1 相变材料、电池、热管、保温材料的热物性参数
Table 1 Thermophysical properties of PCM, batteries, heat pipes, and insulating materials
材料 | 密度/(kg·m–3) | 比热/(J·(g·K)–1) | 导热系数/(W·(m·K)–1) | 动力粘度/(Pa·s) | 热膨胀系数/K–1 | 潜热/(J·kg–1) | 熔化温度/℃ | |||||||
相变材料[ | 814 | 1934.00 | 0.35 | 0.003875 | 0.00091 | 245000 | 27.2~29.2 | |||||||
电池[ | 2751 | 1070.00 | 1.15(径向)23.34(轴向) | |||||||||||
热管 | 400[ | 4000.00[ | 20000 | |||||||||||
保温材料[ | 50 | 1.46 | 0.025 |
图 5 不同保温层厚度下的电池组最高温度、相变材料液相率、保温时长对比
Fig.5 Comparison of maximum battery temperature module, liquid fraction of PCM, and duration of heat preservation under different insulation material thickness
图 7 1.0C工况下不同初始温度对应的电池组最高温度和相变材料液相率
Fig.7 Maximum battery temperature module and liquid fraction of PCM corresponding to different initial temperatures at 1.0C discharge rate
放电倍率 | 电池组最高温度/℃ | 液相率 | 保温时长/s | |||
0.5C | 29.76 | 0.99 | 25060 | |||
1.0C | 31.60 | 1.00 | 27830 | |||
2.0C | 37.52 | 0.96 | 26880 |
表 2 不同放电倍率下的电池组最高温度、相变材料液相率、保温时长
Table 2 Maximum battery temperature module, liquid fraction of PCM and heat preservation duration under different discharge rates
放电倍率 | 电池组最高温度/℃ | 液相率 | 保温时长/s | |||
0.5C | 29.76 | 0.99 | 25060 | |||
1.0C | 31.60 | 1.00 | 27830 | |||
2.0C | 37.52 | 0.96 | 26880 |
图 9 不同放电倍率下电池组最高温度和相变材料液相率随时间的变化
Fig.9 Variation of maximum battery temperature module and liquid fraction of PCM over time at different discharge rates
图 10 不同放电倍率下电池组最高温度和最大温差随风速的变化
Fig.10 Variation of maximum battery temperature and maximum temperature difference with air velocity at different discharge rates
图 11 2.0C放电倍率下电池组最高温度和最大温差随水速的变化
Fig.11 Variation of maximum battery temperature and maximum temperature difference with water velocity at 2.0C discharge rate
1 |
HE L G, JING H D, ZHANG Y, et al. Review of thermal management system for battery electric vehicle[J]. Journal of Energy Storage, 2023, 59, 106443.
DOI |
2 | 岳家辉, 夏向阳, 蒋戴宇, 等. 基于电压数据片段混合模型的锂离子电池剩余寿命预测与健康状态估计[J]. 中国电力, 2023, 56 (7): 163- 174. |
YUE Jiahui, XIA Xiangyagn, JIANG Daiyu, et al. Remaining useful life prediction and state of health estimation of lithium-ion batteries based on voltage data segment hybrid model[J]. Electric Power, 2023, 56 (7): 163- 174. | |
3 | 黎冲, 王成辉, 王高, 等. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55 (8): 73- 86, 95. |
LI Chong, WANG Chenghui, WANG Gao, et al. Technology of lithium-ion battery state-of-health assessment based on data-driven[J]. Electric Power, 2022, 55 (8): 73- 86, 95. | |
4 |
NA X Y, KANG H F, WANG T, et al. Reverse layered air flow for Li-ion battery thermal management[J]. Applied Thermal Engineering, 2018, 143, 257- 262.
DOI |
5 |
ZHANG F R, LIU P W, HE Y X, et al. Cooling performance optimization of air cooling lithium-ion battery thermal management system based on multiple secondary outlets and baffle[J]. Journal of Energy Storage, 2022, 52, 104678.
DOI |
6 | JITHIN K V, RAJESH P K. Numerical analysis of single-phase liquid immersion cooling for lithium-ion battery thermal management using different dielectric fluids[J]. International Journal of Heat and Mass Transfer, 2022, 188. |
7 |
YOUSSEF R, HOSEN M S, HE J C, et al. Novel design optimization for passive cooling PCM assisted battery thermal management system in electric vehicles[J]. Case Studies in Thermal Engineering, 2022, 32, 101896.
DOI |
8 |
ZHAO R, GU J J, LIU J. Performance assessment of a passive core cooling design for cylindrical lithium-ion batteries[J]. International Journal of Energy Research, 2018, 42 (8): 2728- 2740.
DOI |
9 |
LUO J, ZOU D Q, WANG Y S, et al. Battery thermal management systems (BTMs) based on phase change material (PCM): a comprehensive review[J]. Chemical Engineering Journal, 2022, 430, 132741.
DOI |
10 |
LIU H Q, JIN C W, LI H, et al. A numerical study of PCM battery thermal management performance enhancement with fin structures[J]. Energy Reports, 2023, 9, 1793- 1802.
DOI |
11 |
贺春敏, 杨翼, 蔡天鏖, 等. 基于Mxene/石蜡CPCM的锂电池热管理系统[J]. 电源技术, 2023, 47 (5): 627- 631.
DOI |
HE Chunmin, YANG Yi, CAI Tian’ao, et al. Thermal management system of lithium ion battery based on Mxene/paraffin composite phase change material[J]. Chinese Journal of Power Sources, 2023, 47 (5): 627- 631.
DOI |
|
12 |
WANG Y W, PENG P, CAO W J, et al. Experimental study on a novel compact cooling system for cylindrical lithium-ion battery module[J]. Applied Thermal Engineering, 2020, 180, 115772.
DOI |
13 |
XIN Q Q, YANG T Q, ZHANG H Y, et al. Simulation and optimization of lithium-ion battery thermal management system integrating composite phase change material, flat heat pipe and liquid cooling[J]. Batteries, 2023, 9 (6): 334.
DOI |
14 |
SASMITO A P, SHAMIM T, MUJUMDAR A S. Passive thermal management for PEM fuel cell stack under cold weather condition using phase change materials (PCM)[J]. Applied Thermal Engineering, 2013, 58 (1-2): 615- 625.
DOI |
15 |
FANG X Y, NONG X L, LIAO Z R, et al. A novel preheating method for the Li-ion battery using supercooled phase change materials[J]. Science China Technological Sciences, 2023, 66 (1): 193- 203.
DOI |
16 |
WANG Z C, DU C Q, QI R, et al. Experimental study on thermal management of lithium-ion battery with graphite powder based composite phase change materials covering the whole climatic range[J]. Applied Thermal Engineering, 2022, 216, 119072.
DOI |
17 |
CHENG G, WANG Z Z, WANG X Z, et al. All-climate thermal management structure for batteries based on expanded graphite/polymer composite phase change material with a high thermal and electrical conductivity[J]. Applied Energy, 2022, 322, 119509.
DOI |
18 |
YE Y, SAW L H, SHI Y, et al. Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging[J]. Applied Thermal Engineering, 2015, 86, 281- 291.
DOI |
19 |
KANT K, SHUKLA A, SHARMA A, et al. Melting and solidification behaviour of phase change materials with cyclic heating and cooling[J]. Journal of Energy Storage, 2018, 15, 274- 282.
DOI |
20 |
WANG H M, WANG Y F, HU F, et al. Heat generation measurement and thermal management with phase change material based on heat flux for high specific energy power battery[J]. Applied Thermal Engineering, 2021, 194, 117053.
DOI |
21 |
JIAQIANG E, YI F, LI W J, et al. Effect analysis on heat dissipation performance enhancement of a lithium-ion-battery pack with heat pipe for central and southern regions in China[J]. Energy, 2021, 226, 120336.
DOI |
22 | 陈占国. 低温环境锂离子动力电池相变换热研究[D]. 长沙: 湖南大学, 2021. |
CHEN Zhanguo. Study on phase-change heat transfer of low temperature lithium ion power battery[D]. Changsha: Hunan University, 2021. | |
23 |
AKBARZADEH M, JAGUEMONT J, KALOGIANNIS T, et al. A novel liquid cooling plate concept for thermal management of lithium-ion batteries in electric vehicles[J]. Energy Conversion and Management, 2021, 231, 113862.
DOI |
24 |
SEDDEGH S, WANG X L, HENDERSON A D. Numerical investigation of heat transfer mechanism in a vertical shell and tube latent heat energy storage system[J]. Applied Thermal Engineering, 2015, 87, 698- 706.
DOI |
25 |
付程阔, 元佳宇, 刘泽宇, 等. 21700锂离子电池风冷结构设计与散热效果研究[J]. 内燃机与配件, 2022, (9): 1- 3.
DOI |
FU Chengkuo, YUAN Jiayu, LIU Zeyu, et al. 21700 Li-ion battery air-cooled structure design and heat dissipation effect research[J]. Internal Combustion Engine & Parts, 2022, (9): 1- 3.
DOI |
|
26 |
DING Y Z, WEI M X, LIU R. Channel parameters for the temperature distribution of a battery thermal management system with liquid cooling[J]. Applied Thermal Engineering, 2021, 186, 116494.
DOI |
27 |
LI Y H, CHEN Z L, FENG Y, et al. A novel petal-type battery thermal management system with dual phase change materials[J]. International Journal of Heat and Mass Transfer, 2023, 207, 123989.
DOI |
[1] | 夏天, 刘代飞, 岳家辉, 陈来恩, 李亦梁. 基于蜣螂算法优化卡尔曼滤波的锂离子电池模型参数辨识[J]. 中国电力, 2025, 58(1): 196-204. |
[2] | 陈来恩, 曾小勇, 曾子豪, 成采辰, 孙耀科. 基于物理信息与深度神经网络的锂离子电池温度预测[J]. 中国电力, 2024, 57(11): 18-25. |
[3] | 夏向阳, 谭欣欣, 单周平, 李辉, 徐志强, 吴晋波, 岳家辉, 陈贵全. 储能电站锂离子电池本体安全关键技术及新技术应用情况[J]. 中国电力, 2024, 57(11): 1-17. |
[4] | 张媛, 夏向阳, 岳家辉, 刘代飞, 王明琦. 基于电池簇放电电量的电池堆不一致性在线监测方法[J]. 中国电力, 2023, 56(7): 207-215,227. |
[5] | 岳家辉, 夏向阳, 蒋戴宇, 周冠东, 徐志强, 张媛, 吕崇耿. 基于电压数据片段混合模型的锂离子电池剩余寿命预测与健康状态估计[J]. 中国电力, 2023, 56(7): 163-174. |
[6] | 刘文军, 欧名勇, 夏向阳, 李湘华, 岳家辉. 基于欧姆内阻压降的电池簇不一致性在线监测方法研究[J]. 中国电力, 2022, 55(8): 87-95. |
[7] | 黎冲, 王成辉, 王高, 鲁宗虎, 马成智. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55(8): 73-86,95. |
[8] | 冯蕾, 肖刚, 郭磊, 杨承刚, 廖海燕. 云遮挡条件下熔融盐吸热管防护的数值模拟[J]. 中国电力, 2020, 53(11): 220-226. |
[9] | 宋香娥. 先进太阳能热动力发电系统热管吸热器空穴热性能分析[J]. 中国电力, 2015, 48(9): 140-145. |
[10] | 王浩,石勇军,高俊,苗雨升,丁洪峰,于毅. AP1000机组蒸汽发生器传热管役前检查[J]. 中国电力, 2015, 48(10): 6-11. |
[11] | 宋飞, 刘锋, 赵广森, 邓宇强, 张祥金. 某电厂高压加热器换热管开裂泄漏原因分析[J]. 中国电力, 2014, 47(5): 20-24. |
[12] | 苏伟, 钟国彬, 魏增福. 从正极材料看锂离子电池在储能领域的应用[J]. 中国电力, 2013, 46(8): 70-73. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||