[1] SARMAH S B, KALITA P, GARG A, et al. A review of state of health estimation of energy storage systems: challenges and possible solutions for futuristic applications of Li-ion battery packs in electric vehicles[J]. Journal of Electrochemical Energy Conversion and Storage, 2019, 16(4). [2] 卢婷, 杨文强. 锂离子电池全生命周期内评估参数及评估方法综述[J]. 储能科学与技术, 2020, 9(3): 657–669 LU Ting, YANG Wenqiang. Review of evaluation parameters and methods of lithium batteries throughout its life cycle[J]. Energy Storage Science and Technology, 2020, 9(3): 657–669 [3] 王波, 陈东东, 张锦霞, 等. 基于时空分布映射的大规模电池健康状态研究[J]. 智慧电力, 2022, 50(6): 85–91 WANG Bo, CHEN Dongdong, ZHANG Jinxia, et al. Large-scale battery health state prediction based on spatio-temporal distribution mapping[J]. Smart Power, 2022, 50(6): 85–91 [4] FARMANN A, WAAG W, MARONGIU A, et al. Critical review of on-board capacity estimation techniques for lithium-ion batteries in electric and hybrid electric vehicles[J]. Journal of Power Sources, 2015, 281: 114–130. [5] XIONG R, ZHANG Y Z, WANG J, et al. Lithium-ion battery health prognosis based on a real battery management system used in electric vehicles[J]. IEEE Transactions on Vehicular Technology, 2019, 68(5): 4110–4121. [6] LIU J, CHEN Z Q. Remaining useful life prediction of lithium-ion batteries based on health indicator and Gaussian process regression model[J]. IEEE Access, 2019, 7: 39474–39484. [7] ZHOU Y P, HUANG M H, CHEN Y P, et al. A novel health indicator for on-line lithium-ion batteries remaining useful life prediction[J]. Journal of Power Sources, 2016, 321: 1–10. [8] LIU D T, ZHOU J B, LIAO H T, et al. A health indicator extraction and optimization framework for lithium-ion battery degradation modeling and prognostics[J]. IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2015, 45(6): 915–928. [9] GUO P Y, CHENG Z, YANG L. A data-driven remaining capacity estimation approach for lithium-ion batteries based on charging health feature extraction[J]. Journal of Power Sources, 2019, 412: 442–450. [10] ZHANG S Z, ZHAI B Y, GUO X, et al. Synchronous estimation of state of health and remaining useful lifetime for lithium-ion battery using the incremental capacity and artificial neural networks[J]. Journal of Energy Storage, 2019, 26: 100951. [11] LIPU M S H, HANNAN M A, HUSSAIN A, et al. A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: challenges and recommendations[J]. Journal of Cleaner Production, 2018, 205: 115–133. [12] TIAN H X, QIN P L, LI K, et al. A review of the state of health for lithium-ion batteries: research status and suggestions[J]. Journal of Cleaner Production, 2020, 261: 120813. [13] 海涛, 范恒, 陆代强, 等. 基于IMDEKF的SoC-SoH联合估计[J]. 实验室研究与探索, 2021, 40(7): 111–115,139 HAI Tao, FAN Heng, LU Daiqiang, et al. SoC-SoH joint estimation based on IMDEKF[J]. Research and Exploration in Laboratory, 2021, 40(7): 111–115,139 [14] 寇志华, 潘旭海, 季豪. 基于容量衰减速率的三元锂电池健康状态预测[J]. 电源技术, 2018, 42(2): 185–187,194 KOU Zhihua, PAN Xuhai, JI Hao. Prediction of state of health for ternary lithium battery based on capacity decay rate[J]. Chinese Journal of Power Sources, 2018, 42(2): 185–187,194 [15] AZIS N A, JOELIANTO E, WIDYOTRIATMO A. State of charge (SoC) and state of health (SoH) estimation of lithium-ion battery using dual extended Kalman filter based on polynomial battery model[C]//2019 6 th International Conference on Instrumentation, Control, and Automation (ICA). Bandung, Indonesia. IEEE, 2019: 88-93. [16] DONG G Z, CHEN Z H, WEI J W, et al. Battery health prognosis using Brownian motion modeling and particle filtering[J]. IEEE Transactions on Industrial Electronics, 2018, 65(11): 8646–8655. [17] LI X Y, WANG Z P, YAN J Y. Prognostic health condition for lithium battery using the partial incremental capacity and Gaussian process regression[J]. Journal of Power Sources, 2019, 421: 56–67. [18] TIAN J P, XIONG R, SHEN W X. State-of-health estimation based on differential temperature for lithium ion batteries[J]. IEEE Transactions on Power Electronics, 2020, 35(10): 10363–10373. [19] XIA Z Y, ABU QAHOUQ J A. Adaptive and fast state of health estimation method for lithium-ion batteries using online complex impedance and artificial neural network[C]//2019 IEEE Applied Power Electronics Conference and Exposition. Anaheim, CA, USA. IEEE, 2019: 3361–3365. [20] 任璞, 王顺利, 何明芳, 等. 基于内阻增加和容量衰减双重标定的锂电池健康状态评估[J]. 储能科学与技术, 2021, 10(2): 738–743 REN Pu, WANG Shunli, HE Mingfang, et al. State of health estimation of Li-ion battery based on dual calibration of internal resistance increasing and capacity fading[J]. Energy Storage Science and Technology, 2021, 10(2): 738–743 [21] LI Y, LIU K L, FOLEY A M, et al. Data-driven health estimation and lifetime prediction of lithium-ion batteries: a review[J]. Renewable and Sustainable Energy Reviews, 2019, 113: 109254. [22] 王聪聪, 叶思成, 裴春兴, 等. 电池健康状态实验与评估方法综述[J]. 电池, 2021, 51(2): 197–200 WANG Congcong, YE Sicheng, PEI Chunxing, et al. Review on battery state-of-health experiment and estimation methods[J]. Battery Bimonthly, 2021, 51(2): 197–200 [23] B. Saha and K. Goebel (2007). "Battery Data Set", NASA Ames Prognostics Data Repository (http://ti.arc.nasa.gov/project/prognostic-data-repository), NASA Ames Research Center, Moffett Field, CA. [24] XING Y J, MA E W M, TSUI K L, et al. An ensemble model for predicting the remaining useful performance of lithium-ion batteries[J]. Microelectronics Reliability, 2013, 53(6): 811–820. [25] SHURTZ R C, ENGERER J D, HEWSON J C. Predicting high-temperature decomposition of lithiated graphite: part II. passivation layer evolution and the role of surface area[J]. Journal of the Electrochemical Society, 2018, 165(16): A3891–A3902. [26] 王萍, 张吉昂, 程泽. 基于最小二乘支持向量机误差补偿模型的锂离子电池健康状态估计方法[J]. 电网技术, 2022, 46(2): 613–623 WANG Ping, ZHANG Ji'ang, CHENG Ze. State of health estimation of li-ion battery based on least squares support vector machine error compensation model[J]. Power System Technology, 2022, 46(2): 613–623 [27] ZHANG Y W, TANG Q C, ZHANG Y, et al. Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning[J]. Nature Communications, 2020, 11: 1706. [28] ATTIA P M, GROVER A, JIN N, et al. Closed-loop optimization of fast-charging protocols for batteries with machine learning[J]. Nature, 2020, 578(7795): 397–402. [29] CHAHBAZ A, MEISHNER F, LI W H, et al. Non-invasive identification of calendar and cyclic ageing mechanisms for lithium-titanate-oxide batteries[J]. Energy Storage Materials, 2021, 42: 794–805. [30] 熊平, 刘翼平, 游力, 等. 动力电池健康因子提取实验研究[J]. 湖北电力, 2020, 44(2): 99–106 XIONG Ping, LIU Yiping, YOU Li, et al. Experimental research on health factor extraction for Li-ion batteries[J]. Hubei Electric Power, 2020, 44(2): 99–106 [31] 陈雄姿, 于劲松, 唐荻音, 等. 基于贝叶斯LS-SVR的锂电池剩余寿命概率性预测[J]. 航空学报, 2013, 34(9): 2219–2229 CHEN Xiongzi, YU Jinsong, TANG Diyin, et al. Probabilistic residual life prediction for lithium-ion batteries based on Bayesian LS-SVR[J]. Acta Aeronautica et Astronautica Sinica, 2013, 34(9): 2219–2229 [32] BARKER J, SAIDI M Y, KOKSBANG R. Differential capacity as a spectroscopic probe for the investigation of alkali metal insertion reactions[J]. Electrochimica Acta, 1996, 41(16): 2639–2646. [33] 叶健诚, 叶建德, 杨洪涛. 基于电压偏移序列的电池健康状态估计方法[J]. 电源技术, 2021, 45(1): 7–9,38 YE Jiancheng, YE Jiande, YANG Hongtao. State of health estimation method of battery based on voltage offset sequences[J]. Chinese Journal of Power Sources, 2021, 45(1): 7–9,38 [34] 郭永芳, 黄凯, 李志刚. 基于短时搁置端电压压降的快速锂离子电池健康状态预测[J]. 电工技术学报, 2019, 34(19): 3968–3978 GUO Yongfang, HUANG Kai, LI Zhigang. Fast state of health prediction of lithium-ion battery based on terminal voltage drop during rest for short time[J]. Transactions of China Electrotechnical Society, 2019, 34(19): 3968–3978 [35] 杨胜杰, 罗冰洋, 王菁, 等. 基于容量增量曲线峰值区间特征参数的锂离子电池健康状态估算[J]. 电工技术学报, 2021, 36(11): 2277–2287 YANG Shengjie, LUO Bingyang, WANG Jing, et al. State of health estimation for lithium-ion batteries based on peak region feature parameters of incremental capacity curve[J]. Transactions of China Electrotechnical Society, 2021, 36(11): 2277–2287 [36] 王萍, 范凌峰, 程泽. 基于健康特征参数的锂离子电池SOH和RUL联合估计方法[J]. 中国电机工程学报, 2022, 42(4): 1523–1534 WANG Ping, FAN Lingfeng, CHENG Ze. A joint state of health and remaining useful life estimation approach for lithium-ion batteries based on health factor parameter[J]. Proceedings of the CSEE, 2022, 42(4): 1523–1534 [37] 郑永飞, 文怀兴, 韩昉, 等. 基于电池外特征的粒子群神经网络电池健康状态预测[J]. 科学技术与工程, 2019, 19(36): 184–189 ZHENG Yongfei, WEN Huaixing, HAN Fang, et al. Prediction of state of health based on particle swarm neural network with battery external characteristics[J]. Science Technology and Engineering, 2019, 19(36): 184–189 [38] 陈峥, 顾青峰, 沈世全, 等. 基于健康特征提取和PSO-RBF神经网络的锂离子电池健康状态预测[J]. 昆明理工大学学报(自然科学版), 2020, 45(6): 92–103 CHEN Zheng, GU Qingfeng, SHEN Shiquan, et al. State of health prediction for lithium-ion batteries based on health feature extraction and PSO-RBF neural network[J]. Journal of Kunming University of Science and Technology (Natural Science), 2020, 45(6): 92–103 [39] LIN C P, CABRERA J, YANG F F, et al. Battery state of health modeling and remaining useful life prediction through time series model[J]. Applied Energy, 2020, 275: 115338. [40] 王萍, 弓清瑞, 张吉昂, 等. 一种基于数据驱动与经验模型组合的锂电池在线健康状态预测方法[J]. 电工技术学报, 2021, 36(24): 5201–5212 WANG Ping, GONG Qingrui, ZHANG Jiang, et al. An online state of health prediction method for lithium batteries based on combination of data-driven and empirical model[J]. Transactions of China Electrotechnical Society, 2021, 36(24): 5201–5212 [41] 冯雪松, 向勇. 基于多样性增强集成学习的电池健康状态评估[J/OL]. 电测与仪表: 1–8[2022-05-27]. http://kns.cnki.net/kcms/detail/23.1202.TH.20200927.0855.002.html. Feng Xuesong, XIANG Yong. Evaluation of battery health state of based on diversity enhanced integrated learning [J/OL]. Electrical Measurement and Instrumentation: 1–8[2022-05-27]. http://kns.cnki.net/kcms/detail/23.1202.TH.20200927.0855.002.html. [42] 康道新, 李立伟, 杨玉新, 等. 基于IACA-SVR的电池SOH预测研究[J]. 电力电子技术, 2020, 54(9): 62–66 KANG Daoxin, LI Liwei, YANG Yuxin, et al. Estimation of SOH of lithium battery based on IACA-SVR[J]. Power Electronics, 2020, 54(9): 62–66 [43] 李勇琦, 雷旗开, 王浩, 等. 基于BP神经网络的梯次利用电池健康状态诊断[J]. 华电技术, 2021, 43(7): 42–46 LI Yongqi, LEI Qikai, WANG Hao, et al. State of health estimation for echelon-used batteries based on BP neural network[J]. Huadian Technology, 2021, 43(7): 42–46 [44] 陈建新, 候建明, 王鑫, 等. 基于局部信息融合及支持向量回归集成的锂电池健康状态预测[J]. 南京理工大学学报, 2018, 42(1): 48–55 CHEN Jianxin, HOU Jianming, WANG Xin, et al. Prediction for state of health of lithium-ion batteries by local information fusion with ensemble support vector regression[J]. Journal of Nanjing University of Science and Technology, 2018, 42(1): 48–55 [45] 李龙刚, 李立伟, 杨玉新, 等. 基于改进灰狼优化与支持向量回归的锂电池健康状态预测[J]. 南京理工大学学报, 2020, 44(2): 154–161,170 LI Longgang, LI Liwei, YANG Yuxin, et al. Prediction for state of health of lithium-ion battery by improved grey wolf optimization and support vector regression[J]. Journal of Nanjing University of Science and Technology, 2020, 44(2): 154–161,170 [46] 徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36(17): 3693–3704 XU Jianing, NI Yulong, ZHU Chunbo. Remaining useful life prediction for lithium-ion batteries based on improved support vector regression[J]. Transactions of China Electrotechnical Society, 2021, 36(17): 3693–3704 [47] 刘婉晴. 电池健康状态估算[J]. 华北理工大学学报(自然科学版), 2017, 39(1): 91–95 LIU Wanqing. Estimation of battery health state[J]. Journal of North China University of Science and Technology (Natural Science Edition), 2017, 39(1): 91–95 [48] 张任, 胥芳, 陈教料, 等. 基于PSO-RBF神经网络的锂离子电池健康状态预测[J]. 中国机械工程, 2016, 27(21): 2975–2981 ZHANG Ren, XU Fang, CHEN Jiaoliao, et al. Li-ion battery SOH prediction based on PSO-RBF neural network[J]. China Mechanical Engineering, 2016, 27(21): 2975–2981 [49] 张代华, 张涧翔, 毕星海, 等. 基于有监督核自组织映射的锂电池健康状态预测[J]. 南京理工大学学报, 2020, 44(1): 61–66 ZHANG Daihua, ZHANG Jianxiang, BI Xinghai, et al. Prediction of SOH of lithium batteries based on supervised kernel self-organizing map[J]. Journal of Nanjing University of Science and Technology, 2020, 44(1): 61–66 [50] 王凡, 史永胜, 刘博亲, 等. 基于注意力改进BiGRU的锂离子电池健康状态估计[J]. 储能科学与技术, 2021, 10(6): 2326–2333 WANG Fan, SHI Yongsheng, LIU Boqin, et al. Health state estimation of lithium-ion batteries based on attention augmented BiGRU[J]. Energy Storage Science and Technology, 2021, 10(6): 2326–2333 [51] 王宇胜, 陈德旺, 蔡俊鹏, 等. 基于LSTM-SVR的锂电池健康状态预测研究[J]. 电源技术, 2020, 44(12): 1784–1787 WANG Yusheng, CHEN Dewang, CAI Junpeng, et al. Research on lithium battery state of health prediction based on LSTM-SVR[J]. Chinese Journal of Power Sources, 2020, 44(12): 1784–1787 [52] 刘伟霞, 田勋, 肖家勇, 等. 基于混合模型及LSTM的锂电池SOH与剩余寿命预测[J]. 储能科学与技术, 2021, 10(2): 689–694 LIU Weixia, TIAN Xun, XIAO Jiayong, et al. Estimation of SOH and remaining life of lithium batteries based on a combination model and long short-term memory[J]. Energy Storage Science and Technology, 2021, 10(2): 689–694
|