中国电力 ›› 2022, Vol. 55 ›› Issue (8): 73-86,95.DOI: 10.11930/j.issn.1004-9649.202202012

• 新型电力系统储能关键技术应用 • 上一篇    下一篇

基于数据驱动的锂离子电池健康状态估计技术

黎冲1, 王成辉1, 王高1, 鲁宗虎2, 马成智2   

  1. 1. 国家能源集团新疆能源有限责任公司,新疆 乌鲁木齐 831499;
    2. 新疆工业云大数据创新中心有限公司,新疆 乌鲁木齐 830026
  • 收稿日期:2022-02-10 修回日期:2022-05-27 发布日期:2022-08-18
  • 作者简介:黎 冲(1987—),男,本科,从事锂离子电池状态评估与大规模应用技术研究,E-mail:357851791@qq.com;鲁宗虎(1984—),男,通信作者,本科,从事储能系统集成与控制技术研究,E-mail:luzonghu0101@163.com
  • 基金资助:
    北京市自然科学基金资助项目(21JC0026)。

Technology of Lithium-Ion Battery State-of-Health Assessment Based on Data-Driven

LI Chong1, WANG Chenghui1, WANG Gao1, LU Zonghu2, MA Chengzhi2   

  1. 1. Xinjiang Energy Co., Ltd., China Energy Investment Corporation, Urumchi 831499, China;
    2. Xinjiang Industrial Cloud & Big Data Innovation Center Co., Ltd., Urumchi 830026, China
  • Received:2022-02-10 Revised:2022-05-27 Published:2022-08-18
  • Supported by:
    This works supported by Natural Science Foundation of Beijing (No.21JC0026)

摘要: 电池健康状态(state of health, SOH)是影响锂离子电池大规模应用的关键因素,而基于数据驱动的锂离子健康状态估计方法已经成为当前相关研究的热点课题。为了系统地剖析数据驱动下电池SOH估计方法的关键技术和难点问题,从电池数据来源、特征工程、估计模型以及验证途径4个核心环节出发,综述当前研究的进展。通过多种不同方法基本机理的分析和优缺点对比,凝炼出制约技术发展的瓶颈问题,展望未来研究的重点方向,推动基于数据驱动的锂离子电池SOH估计技术的进一步发展与应用。

关键词: 锂离子电池, 健康状态评估, 数据驱动技术, 特征工程, 回归模型

Abstract: The battery state of health (SOH) is a key factor affecting the large-scale application of lithium-ion batteries, and the data-driven lithium-ion SOH assessment method has become a hot topic in current related research. In order to systematically dissect the key technologies and difficulties of the data-driven battery SOH assessment method, this paper reviews the current research progress from four core links, namely, battery data sources, feature engineering, assessment models, and validation approaches. By analyzing the basic mechanism and comparing the advantages and disadvantages of various methods, this paper pinpoints the bottlenecks that restrict the development of technology and puts forward key directions for future research to promote the development and application of lithium-ion battery SOH assessment based on data-driven technology.

Key words: lithium-ion battery, state of health assessment, data-driven technology, feature engineering, regression model