中国电力 ›› 2024, Vol. 57 ›› Issue (11): 18-25.DOI: 10.11930/j.issn.1004-9649.202403004

• 储能用锂离子电池本体安全关键技术 • 上一篇    下一篇

基于物理信息与深度神经网络的锂离子电池温度预测

陈来恩1(), 曾小勇1(), 曾子豪2, 成采辰1, 孙耀科1,3   

  1. 1. 长沙理工大学 电气与信息工程学院,湖南 长沙 410114
    2. 国网湖南综合能源服务有限公司,湖南 长沙 410000
    3. 内华达大学拉斯维加斯分校,美国 内华达州拉斯维加斯 89154
  • 收稿日期:2024-03-01 出版日期:2024-11-28 发布日期:2024-11-27
  • 作者简介:陈来恩(1999—),男,硕士研究生,从事锂离子电池建模及状态估计研究,E-mail:berrychen@stu.csust.edu.cn
    曾小勇(1980—),男,通信作者,博士,讲师,从事非线性系统建模以及锂离子电池建模、状态估计研究,E-mail:super_zxy@163.com
  • 基金资助:
    国家自然科学基金资助项目(柔性直流输电交流侧故障下换流器多桥臂主动应对的能量调控机理及穿越控制研究,51977014)。

Temperature Prediction of Lithium-Ion Batteries Based on Physical Information and Deep Neural Network

Laien CHEN1(), Xiaoyong ZENG1(), Zihao ZENG2, Caichen CHENG1, Yaoke SUN1,3   

  1. 1. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China
    2. State Grid Hunan Comprehensive Energy Service Company Limited, Changsha 410000, China
    3. University of Nevada, Las Vegas, Nevada Las Vegas 89154, The United States of America
  • Received:2024-03-01 Online:2024-11-28 Published:2024-11-27
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Energy Regulation Mechanism and Faul Ride-through Control of Multi-armed Converter of AC Side Fault in MMC-HVDC System, No.51977014).

摘要:

准确预测锂离子电池的温度是电池管理系统的关键技术。针对锂离子电池的动态以及时序依赖特性,构建了一种深度神经网络用于锂离子电池的温度预测。该模型可以提取数据的潜在高维特征并适当降维以减少模型复杂度,同时通过长短期记忆单元层捕获温度的长期依赖关系。此外,通过锂离子电池的开路电压、端电压以及电流实时计算产热率,从而为深度神经网络提供额外的物理信息输入。结果表明,该方法相比于其他方法具有更好的温度预测性能。

关键词: 锂离子电池, 温度预测, 产热率, 物理信息, 深度神经网络

Abstract:

Accurately predicting the temperature of lithium-ion batteries is a key technology for battery management systems. A deep neural network is constructed for temperature prediction of lithium-ion batteries based on their dynamic as well as time-dependent characteristics. The model can extract the potential high-dimension features of the data and appropriately reduce their dimensionality to reduce the model complexity while capturing the long-term dependence of temperature through the layer of long short-term memory cells. In addition, the heat generation rate is calculated in real-time through the open circuit voltage, terminal voltage and current of the lithium-ion battery, thus providing additional physical information input to the deep neural network. The results show that the method has better temperature prediction performance compared to other methods.

Key words: lithium-ion batteries, temperature prediction, heat generation rate, physical information, deep neural network.