中国电力 ›› 2024, Vol. 57 ›› Issue (3): 190-196.DOI: 10.11930/j.issn.1004-9649.202303020

• 新能源 • 上一篇    下一篇

基于风况预测误差自适应的海上风电场尾流偏转控制方法

阎洁1(), 杨佳琳1(), 王航宇1(), 卢姣阳1, 刘永前1, 张磊2   

  1. 1. 华北电力大学 新能源电力系统国家重点实验室,北京 102206
    2. 西藏自治区地勘局地质调查院,西藏 拉萨 850000
  • 收稿日期:2023-03-06 出版日期:2024-03-28 发布日期:2024-03-26
  • 作者简介:阎洁(1987—),女,通信作者,博士,副教授,从事风功率预测、风电场运行控制研究,E-mail:yanjie@ncepu.edu.cn
    杨佳琳(1998—),女,硕士研究生,从事风电场尾流偏转控制研究,E-mail:jialiny@ncepu.edu.cn
    王航宇(1996—),男,博士研究生,从事风电场尾流偏转控制研究,E-mail:hangyuw@ncepu.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(海上风电场智能运行控制技术研究,2019YFE0104800)。

Offshore Wind Farm Wake Deflection Control Based on Adaptive Wind Condition Prediction Error

Jie YAN1(), Jialin YANG1(), Hangyu WANG1(), Jiaoyang LU1, Yongqian LIU1, Lei ZHANG2   

  1. 1. State Key Laboratory of Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China
    2. Geological Survey Institute of Xizang Geological Survey Bureau, Lhasa 850000, China
  • Received:2023-03-06 Online:2024-03-28 Published:2024-03-26
  • Supported by:
    This work is supported by National Key R&D Program (Research on Intelligent Operation Control Technology for Offshore Wind Farms, No.2019YFE0104800).

摘要:

风电场尾流偏转控制是降低尾流效应、提升整场发电量的重要手段。风况预测值是风电场尾流偏转控制的重要输入,其误差给实际控制效果带来巨大影响,甚至导致全场发电量“不增反降”,极大限制了风电场尾流偏转控制技术的工程应用。以某海上风电场实际运行数据为例,探索了分钟级风速和风向预测误差对风电场尾流偏转控制效果的影响,提出了风况预测误差自适应的海上风电场尾流偏转控制方法及基于深度神经网络的控制模型。研究结果表明:与不考虑风况预测误差自适应的传统风电场尾流偏转控制方法相比,所提方法的全场发电量提高了1.77%。

关键词: 海上风电, 尾流控制, 偏航角, 风况预测, 误差自适应, 深度神经网络

Abstract:

Wind farm wake deflection control is an important tool to reduce the wake effect and improve the total power generation. The wind prediction is an important input to the wind farm wake deflection control, and its error has a huge impact on the actual control effect, even leading to a "decrease instead of an increase" in the overall power generation, which greatly limits the engineering application of wind farm wake deflection control technology. Therefore, this paper explores the impact of minute-level wind speed and wind direction prediction errors on the wind farm wake deflection control effect of an offshore wind farm, and proposes an offshore wind farm wake deflection control based on adaptive wind condition prediction error and a control model based on deep neural network. The results show that the total power generation of the proposed method is improved by 1.77% compared with the conventional wind farm wake deflection control method without wind prediction error adaption.

Key words: offshore wind farm, wake control, yaw angle, wind condition prediction, error adaptation, deep neural network