中国电力 ›› 2024, Vol. 57 ›› Issue (3): 190-196.DOI: 10.11930/j.issn.1004-9649.202303020
阎洁1(), 杨佳琳1(
), 王航宇1(
), 卢姣阳1, 刘永前1, 张磊2
收稿日期:
2023-03-06
出版日期:
2024-03-28
发布日期:
2024-03-26
作者简介:
阎洁(1987—),女,通信作者,博士,副教授,从事风功率预测、风电场运行控制研究,E-mail:yanjie@ncepu.edu.cn基金资助:
Jie YAN1(), Jialin YANG1(
), Hangyu WANG1(
), Jiaoyang LU1, Yongqian LIU1, Lei ZHANG2
Received:
2023-03-06
Online:
2024-03-28
Published:
2024-03-26
Supported by:
摘要:
风电场尾流偏转控制是降低尾流效应、提升整场发电量的重要手段。风况预测值是风电场尾流偏转控制的重要输入,其误差给实际控制效果带来巨大影响,甚至导致全场发电量“不增反降”,极大限制了风电场尾流偏转控制技术的工程应用。以某海上风电场实际运行数据为例,探索了分钟级风速和风向预测误差对风电场尾流偏转控制效果的影响,提出了风况预测误差自适应的海上风电场尾流偏转控制方法及基于深度神经网络的控制模型。研究结果表明:与不考虑风况预测误差自适应的传统风电场尾流偏转控制方法相比,所提方法的全场发电量提高了1.77%。
阎洁, 杨佳琳, 王航宇, 卢姣阳, 刘永前, 张磊. 基于风况预测误差自适应的海上风电场尾流偏转控制方法[J]. 中国电力, 2024, 57(3): 190-196.
Jie YAN, Jialin YANG, Hangyu WANG, Jiaoyang LU, Yongqian LIU, Lei ZHANG. Offshore Wind Farm Wake Deflection Control Based on Adaptive Wind Condition Prediction Error[J]. Electric Power, 2024, 57(3): 190-196.
风向 | 风速/(m∙s–1) | 风速预测 误差/(m∙s–1) | 风向预测 误差/(°) | |||
主导/非主导 | 5 | [–1, 1], 分辨率为0.1 | — | |||
6 | ||||||
7 | ||||||
8 | ||||||
9 | ||||||
主导/非主导 | 5 | — | [–10, 10], 分辨率为1 | |||
6 | ||||||
7 | ||||||
8 | ||||||
9 |
表 1 场景设置
Table 1 Scene setting
风向 | 风速/(m∙s–1) | 风速预测 误差/(m∙s–1) | 风向预测 误差/(°) | |||
主导/非主导 | 5 | [–1, 1], 分辨率为0.1 | — | |||
6 | ||||||
7 | ||||||
8 | ||||||
9 | ||||||
主导/非主导 | 5 | — | [–10, 10], 分辨率为1 | |||
6 | ||||||
7 | ||||||
8 | ||||||
9 |
1 |
房方, 梁栋炀, 刘亚娟, 等. 海上风电智能控制与运维关键技术[J]. 发电技术, 2022, 43 (2): 175- 185.
DOI |
FANG Fang, LIANG Dongyang, LIU Yajuan, et al. Key technologies for intelligent control and operation and maintenance of offshore wind power[J]. Power Generation Technology, 2022, 43 (2): 175- 185.
DOI |
|
2 | 葛畅, 阎洁, 刘永前, 等. 海上风电场运行控制维护关键技术综述[J]. 中国电机工程学报, 2022, 42 (12): 4278- 4291. |
GE Chang, YAN Jie, LIU Yongqian, et al. Review of key technologies for operation control and maintenance of offshore wind farm[J]. Proceedings of the CSEE, 2022, 42 (12): 4278- 4291. | |
3 |
HUSIEN W, EL-OSTA W, DEKAM E. Effect of the wake behind wind rotor on optimum energy output of wind farms[J]. Renewable Energy, 2013, 49, 128- 132.
DOI |
4 |
SANDERSE B, PIJL S P, KOREN B. Review of computational fluid dynamics for wind turbine wake aerodynamics[J]. Wind Energy, 2011, 14 (7): 799- 819.
DOI |
5 | POLSSTER M. Comprehensive comparison of analytical wind turbine wake models with wind tunnel measurements and wake model application on performance modelling of a downstream turbine[D]. Trondheim: Norwegian University of Science and Technology, 2017: 1–19. |
6 | 顾波. 风电场尾流快速计算及场内优化调度研究[D]. 北京: 华北电力大学, 2016. |
GU Bo. Wake fast-calculation and power optimal dispatch for wind farms[D]. Beijing: North China Electric Power University, 2016. | |
7 |
杨志超, 高丙团, 叶飞, 等. 基于尾流效应的风电场最大出力优化控制[J]. 电力建设, 2017, 38 (4): 96- 102.
DOI |
YANG Zhichao, GAO Bingtuan, YE Fei, et al. Maximum output optimal control of wind farm based on wake effect[J]. Electric Power Construction, 2017, 38 (4): 96- 102.
DOI |
|
8 | 邓智文, 郭苏, 许昌, 等. 海上风电场功率提升和疲劳平衡综合优化控制[J]. 太阳能学报, 2021, 42 (1): 180- 186. |
DENG Zhiwen, GUO Su, XU Chang, et al. Comprehensive optimization control of power boost and fatigue balance for offshore wind farms[J]. Acta Energiae Solaris Sinica, 2021, 42 (1): 180- 186. | |
9 | 宁旭, 曹留帅, 万德成. 基于尾流模型的风场偏航控制优化研究[J]. 海洋工程, 2020, 38 (5): 80- 90. |
NING Xu, CAO Liushuai, WAN Decheng. Study of wind farm optimization through yaw control based on analytical wake model[J]. The Ocean Engineering, 2020, 38 (5): 80- 90. | |
10 |
焦鑫, 陈为国, 张志军, 等. 基于偏航尾流模型的风场尾流主动控制[J]. 自动化技术与应用, 2020, 39 (5): 110- 114.
DOI |
JIAO Xin, CHEN Weiguo, ZHANG Zhijun, et al. Active control of wind field wake based on yaw wake model[J]. Techniques of Automation and Applications, 2020, 39 (5): 110- 114.
DOI |
|
11 |
DOU B Z, QU T M, LEI L P, et al. Optimization of wind turbine yaw angles in a wind farm using a three-dimensional yawed wake model[J]. Energy, 2020, 209, 118415.
DOI |
12 |
SUN H Y, QIU C Y, LU L, et al. Wind turbine power modelling and optimization using artificial neural network with wind field experimental data[J]. Applied Energy, 2020, 280, 115880.
DOI |
13 |
YANG S H, DENG X W, TI Z L, et al. Cooperative yaw control of wind farm using a double-layer machine learning framework[J]. Renewable Energy, 2022, 193, 519- 537.
DOI |
14 | 王航宇. 基于风过程的风电场尾流优化控制方法研究[D]. 北京: 华北电力大学, 2022. |
Wang Hangyu. Research on the optimal control method of wind farm wake based on wind process [D]. Beijing: North China Electric Power University, 2022. | |
15 |
FLEMING P, KING J, DYKES K, et al. Initial results from a field campaign of wake steering applied at a commercial wind farm[J]. Wind Energy Science, 2019, 4 (2): 273- 285.
DOI |
16 |
刘永前, 周家慷, 阎洁, 等. 基于多任务学习的风速实时预测方法[J]. 可再生能源, 2021, 39 (4): 481- 487.
DOI |
LIU Yongqian, ZHOU Jiakang, YAN Jie, et al. Wind speed real-time prediction method based on multi-task learning[J]. Renewable Energy Resources, 2021, 39 (4): 481- 487.
DOI |
|
17 | 张金良, 刘子毅. 基于混合模型的超短期风速区间预测[J]. 电力系统保护与控制, 2022, 50 (22): 49- 58. |
ZHANG Jinliang, LIU Ziyi. Ultra short term wind speed interval prediction based on a hybrid model[J]. Power System Protection and Control, 2022, 50 (22): 49- 58. | |
18 | 姜明洋, 徐丽, 张开军, 等. 基于季节指数调整的循环神经网络风速时间序列预测[J]. 太阳能学报, 2022, 43 (2): 444- 450. |
JIANG Mingyang, XU Li, ZHANG Kaijun, et al. Recurrent neural network prediction of wind speed time series based on seasonal exponential adjustment[J]. Acta Energiae Solaris Sinica, 2022, 43 (2): 444- 450. | |
19 | 唐振浩, 赵赓楠, 曹生现, 等. 基于SWLSTM算法的超短期风向预测[J]. 中国电机工程学报, 2019, 39 (15): 4459- 4468. |
TANG Zhenhao, ZHAO Gengnan, CAO Shengxian, et al. Very short-term wind direction prediction via self-tuning wavelet long-short term memory neural network[J]. Proceedings of the CSEE, 2019, 39 (15): 4459- 4468. | |
20 | 唐振浩, 赵赓楠, 曹生现, 等. 一种基于数据解析的混合风向预测算法[J]. 太阳能学报, 2021, 42 (9): 349- 356. |
TANG Zhenhao, ZHAO Gengnan, CAO Shengxian, et al. A data analystic based hybrid wind direction prediction algorithm[J]. Acta Energiae Solaris Sinica, 2021, 42 (9): 349- 356. | |
21 | 贾睿, 杨国华, 郑豪丰, 等. 基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法[J]. 中国电力, 2022, 55 (5): 47- 56, 110. |
JIA Rui, YANG Guohua, ZHENG Haofeng, et al. Combined wind power prediction method based on CNN-LSTM & GRU with adaptive weights[J]. Electric Power, 2022, 55 (5): 47- 56, 110. | |
22 |
高阳, 谢丽蓉, 叶家豪, 等. 自适应提升及预测误差修正的风电功率超短期预测[J]. 智慧电力, 2022, 50 (8): 14- 21.
DOI |
GAO Yang, XIE Lirong, YE Jiahao, et al. Ultra-short-term wind power prediction based on adaptive lifting and prediction error correction[J]. Smart Power, 2022, 50 (8): 14- 21.
DOI |
|
23 | 罗佑新, 何哲明, 车晓毅. 非线性方程组求解的超混沌序列最小二乘法及其应用[J]. 湖南文理学院学报(自然科学版), 2010, 22 (1): 36- 39. |
LUO Youxin, HE Zheming, CHE Xiaoyi. Hyper-chaotic sequence least square method for solving nonlinear equations and its application[J]. Journal of Hunan University of Arts and Science (Natural Science Edition), 2010, 22 (1): 36- 39. | |
24 |
IBRAHIM Y, WANG H B, LIU J Y, et al. Soft errors in DNN accelerators: a comprehensive review[J]. Microelectronics Reliability, 2020, 115, 113969.
DOI |
25 |
HAN H, XU L, CUI X Y, et al. Novel chiller fault diagnosis using deep neural network (DNN) with simulated annealing (SA)[J]. International Journal of Refrigeration, 2021, 121, 269- 278.
DOI |
[1] | 丰力, 张莲梅, 韦家佳, 邓长虹, 李果, 尹家悦. 基于全生命周期经济评估的海上风电发展与思考[J]. 中国电力, 2024, 57(9): 80-93. |
[2] | 姜文瑾, 刘巧妹, 杨晓东, 阙定飞, 沈豫, 黄夏楠, 赖振华. 计及气固两相储氢特性的海上风电-多元储能系统优化配置[J]. 中国电力, 2024, 57(9): 103-112. |
[3] | 黄宁泊, 高建伟, 许传博, 徐选华, 赵舒通, 缑迅杰, 姜晓静. 基于经验挖掘与混合语言的海上风电制氢加氢港口选址研究[J]. 中国电力, 2024, 57(9): 113-123. |
[4] | 叶婧, 蔡俊文, 张磊, 周广浩, 何杰辉, 翟学. 考虑海缆实际载流量的海上风电集电系统拓扑优化[J]. 中国电力, 2024, 57(7): 173-181. |
[5] | 陈来恩, 曾小勇, 曾子豪, 成采辰, 孙耀科. 基于物理信息与深度神经网络的锂离子电池温度预测[J]. 中国电力, 2024, 57(11): 18-25. |
[6] | 叶婧, 周广浩, 张磊, 杨莉, 翟学, 蔡俊文. 考虑馈线交叉规避的海上风电场海缆路径优化[J]. 中国电力, 2023, 56(6): 167-175. |
[7] | 苏开元, 董文凯, 邱银锋, 魏澈, 谢小荣. 分散式风储一体化系统提升海上油田群电网频率稳定性研究[J]. 中国电力, 2023, 56(5): 163-171. |
[8] | 杨舒婷, 陈新, 黄通, 魏麒璇. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56(4): 38-45. |
[9] | 苏向敬, 宇海波, 符杨, 田书欣, 李海瑜, 耿福海. 基于DALSTM和联合分位数损失的海上风电功率概率预测[J]. 中国电力, 2023, 56(11): 10-19. |
[10] | 王朝辉, 黄松阁, 林斌, 陈雨薇, 范淑敏, 施朝晖. 基于海上风电场区66 kV集电系统海缆最大截面经济性分析[J]. 中国电力, 2023, 56(11): 20-28. |
[11] | 廖修谱, 周全, 李磊, 李彬彬, 王志远, 杨明, 徐殿国. 一种适用于远海风电直流汇集送出换流阀的拓扑及其技术经济性分析[J]. 中国电力, 2022, 55(6): 118-127. |
[12] | 王宇航, 王文玲, 周绪红, 王康, 罗崯滔. 海上风电机组格构式浮式基础结构优化及响应分析[J]. 中国电力, 2022, 55(5): 21-31. |
[13] | 孙艳霞, 方是文, 李震. 海上风电经交流电缆汇集送出系统暂态无功电压建模及特性分析[J]. 中国电力, 2022, 55(4): 166-174. |
[14] | 马晋龙, 孙勇, 叶学顺. 欧洲海上风电规划机制和激励策略及其启示[J]. 中国电力, 2022, 55(4): 1-11,92. |
[15] | 易锦桂, 朱自伟, 谢青. 基于改进场景聚类算法的海上风电储能优化配置研究[J]. 中国电力, 2022, 55(12): 2-10. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||