中国电力 ›› 2023, Vol. 56 ›› Issue (11): 10-19.DOI: 10.11930/j.issn.1004-9649.202212011

• 海上风电送出与并网技术 • 上一篇    下一篇

基于DALSTM和联合分位数损失的海上风电功率概率预测

苏向敬1(), 宇海波1(), 符杨1(), 田书欣1, 李海瑜2, 耿福海2   

  1. 1. 上海电力大学 电气工程学院,上海 200090
    2. 国家电投集团上海能源科技发展有限公司,上海 200233
  • 收稿日期:2022-12-05 接受日期:2023-05-04 出版日期:2023-11-28 发布日期:2023-11-28
  • 作者简介:苏向敬(1984—),男,博士,副教授,从事海上风电大数据技术、主动配电网优化规划运行研究,E-mail: xiangjing_su@126.com
    宇海波(1996—),男,硕士研究生,从事基于人工智能的海上风电功率概率预测技术研究,E-mail: 1014565348@qq.com
    符杨(1968—),男,通信作者,博士,教授,博士生导师,从事风力发电与并网技术、变压器状态检测与故障诊断研究,E-mail: mfudong@126.com
  • 基金资助:
    国家自然科学基金资助项目(基于Vague软集的海上风电集群组网接入下输电网鲁棒扩展规划方法研究,52007112);上海市教育委员会科研创新计划资助项目(面向大规模海上风电友好接入的海上电网规划与优化运行理论方法,2021-01-07-00-07-E00122)。

Probabilistic Forecasting of Offshore Wind Power Based on Dual-stage Attentional LSTM and Joint Quantile Loss Function

Xiangjing SU1(), Haibo YU1(), Yang FU1(), Shuxin TIAN1, Haiyu LI2, Fuhai GENG2   

  1. 1. School of Electrical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
    2. Shanghai Energy Technology Development Co. Ltd., State Power Investment Corporation Limited, Shanghai 200233, China
  • Received:2022-12-05 Accepted:2023-05-04 Online:2023-11-28 Published:2023-11-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Robust Expansion Planning Method of Offshore Wind Power Cluster Network Access to the Lower Transmission Grid Based on Vague Soft Set, No.52007112) and Scientific Research & Innovation Program of Shanghai Education Commission (Theoretical Methods for the Planning and Optimized Operation of Offshore Power Grids Friendly to Large-Scale Offshore Wind Power Integration, No.2021-01-07-00-07-E00122).

摘要:

传统特征关联方法的预设阈值限制及分位数损失中各分位点损失的量级差异,使得海上风电功率概率预测精度受限。为了提高概率预测精度,提出了一种基于多任务联合分位数损失的双重注意力概率预测模型(MT-DALSTM)。首先,引入特征和时序双重注意力机制对特征间的关联关系和时序依赖性进行挖掘,赋予关键特征和时间点信息以注意力权重来提升功率预测的准确性;其次,在模型训练方面,采用一种基于任务不确定性的多任务联合分位数损失,通过动态调整各损失权重占比来提升最终预测结果的综合性能指标;最后,基于东海大桥海上风电场真实数据仿真验证结果表明:相比于现有的风电概率预测研究,所提方法在锐度、可靠性、综合性能指标上均具有明显提升,验证了该模型提高预测精度的有效性。

关键词: 海上风电, 概率预测, 注意力机制, 注意力权重, 特征关联性, 分位数回归

Abstract:

Probabilistic prediction of offshore wind power is not high in accuracy due to the predetermined threshold limitation of the traditional feature correlation method and the magnitude difference of the quantile loss in each quantile loss. To improve the probabilistic prediction accuracy, a multi-task joint quantile loss-based dual-attention probabilistic prediction model (MT-DALSTM) is proposed. Firstly, a feature and temporal dual attention mechanism is introduced to mine the correlation and temporal dependence among features, and attention weights are given to key features and time point information to improve the accuracy of power prediction. Secondly, during model training, the multi-task joint quantile loss based on task uncertainty is used to improve the final prediction results by dynamically adjusting the proportion of each loss weight. Finally, the simulation validation results based on the real data from the Donghai Bridge offshore wind farm show that the proposed method has significant improvement in sharpness, reliability and comprehensive performance indexes compared to the existing wind power probabilistic prediction studies, which verifies the effectiveness of the model in improving the prediction accuracy.

Key words: offshore wind power, probabilistic prediction, attention mechanism, attention weight, feature relevance, quantile regression