中国电力 ›› 2023, Vol. 56 ›› Issue (11): 10-19.DOI: 10.11930/j.issn.1004-9649.202212011
苏向敬1(), 宇海波1(
), 符杨1(
), 田书欣1, 李海瑜2, 耿福海2
收稿日期:
2022-12-05
接受日期:
2023-05-04
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
苏向敬(1984—),男,博士,副教授,从事海上风电大数据技术、主动配电网优化规划运行研究,E-mail: xiangjing_su@126.com基金资助:
Xiangjing SU1(), Haibo YU1(
), Yang FU1(
), Shuxin TIAN1, Haiyu LI2, Fuhai GENG2
Received:
2022-12-05
Accepted:
2023-05-04
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
传统特征关联方法的预设阈值限制及分位数损失中各分位点损失的量级差异,使得海上风电功率概率预测精度受限。为了提高概率预测精度,提出了一种基于多任务联合分位数损失的双重注意力概率预测模型(MT-DALSTM)。首先,引入特征和时序双重注意力机制对特征间的关联关系和时序依赖性进行挖掘,赋予关键特征和时间点信息以注意力权重来提升功率预测的准确性;其次,在模型训练方面,采用一种基于任务不确定性的多任务联合分位数损失,通过动态调整各损失权重占比来提升最终预测结果的综合性能指标;最后,基于东海大桥海上风电场真实数据仿真验证结果表明:相比于现有的风电概率预测研究,所提方法在锐度、可靠性、综合性能指标上均具有明显提升,验证了该模型提高预测精度的有效性。
苏向敬, 宇海波, 符杨, 田书欣, 李海瑜, 耿福海. 基于DALSTM和联合分位数损失的海上风电功率概率预测[J]. 中国电力, 2023, 56(11): 10-19.
Xiangjing SU, Haibo YU, Yang FU, Shuxin TIAN, Haiyu LI, Fuhai GENG. Probabilistic Forecasting of Offshore Wind Power Based on Dual-stage Attentional LSTM and Joint Quantile Loss Function[J]. Electric Power, 2023, 56(11): 10-19.
预测模型 | SAW/kW | SCRPS | ||
DQR | 483.23 | 94.94 | ||
LSTM-QR | 457.44 | 89.54 | ||
DALSTM | 407.28 | 71.41 | ||
MT-DALSTM | 372.37 | 64.23 |
表 1 概率预测结果对比
Table 1 Comparison of probabilistic predicting results
预测模型 | SAW/kW | SCRPS | ||
DQR | 483.23 | 94.94 | ||
LSTM-QR | 457.44 | 89.54 | ||
DALSTM | 407.28 | 71.41 | ||
MT-DALSTM | 372.37 | 64.23 |
预测模型 | SAW/kW | SCRPS | ||
MT-DALSTM(无变桨特征) | 394.46 | 69.17 | ||
MT-DALSTM | 372.37 | 64.23 |
表 2 变桨特征预测结果对比
Table 2 Comparison of pitch characteristics probabilistic predicting results
预测模型 | SAW/kW | SCRPS | ||
MT-DALSTM(无变桨特征) | 394.46 | 69.17 | ||
MT-DALSTM | 372.37 | 64.23 |
1 | 全球风能协会(GWEC). 全球风能2022年度报告[EB/OL].https://gwec. net/policy- research/reports/. |
2 |
孙荣富, 张涛, 和青, 等. 风电功率预测关键技术及应用综述[J]. 高电压技术, 2021, 47 (4): 1129- 1143.
DOI |
SUN Rongfu, ZHANG Tao, HE Qing, et al. Review on key technologies and applications in wind power forecasting[J]. High Voltage Engineering, 2021, 47 (4): 1129- 1143.
DOI |
|
3 |
迟永宁, 梁伟, 张占奎, 等. 大规模海上风电输电与并网关键技术研究综述[J]. 中国电机工程学报, 2016, 36 (14): 3758- 3771.
DOI |
CHI Yongning, LIANG Wei, ZHANG Zhankui, et al. An overview on key technologies regarding power transmission and grid integration of large scale offshore wind power[J]. Proceedings of the CSEE, 2016, 36 (14): 3758- 3771.
DOI |
|
4 |
YUAN X H, TAN Q X, LEI X H, et al. Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine[J]. Energy, 2017, 129, 122- 137.
DOI |
5 |
LIU X L, LIN Z, FENG Z M. Short-term offshore wind speed forecast by seasonal ARIMA - a comparison against GRU and LSTM[J]. Energy, 2021, 227, 120492.
DOI |
6 |
张群, 唐振浩, 王恭, 等. 基于长短时记忆网络的超短期风功率预测模型[J]. 太阳能学报, 2021, 42 (10): 275- 281.
DOI |
ZHANG Qun, TANG Zhenhao, WANG Gong, et al. Ultra-short-term wind power prediction model based on long and short term memory network[J]. Acta Energiae Solaris Sinica, 2021, 42 (10): 275- 281.
DOI |
|
7 |
LIN Z, LIU X L. Wind power forecasting of an offshore wind turbine based on high-frequency SCADA data and deep learning neural network[J]. Energy, 2020, 201, 117693.
DOI |
8 |
黄冬梅, 庄兴科, 胡安铎, 等. 基于灰色关联分析和K均值聚类的短期负荷预测[J]. 电力建设, 2021, 42 (7): 110- 117.
DOI |
HUANG Dongmei, ZHUANG Xingke, HU Anduo, et al. Short-term load forecasting based on similar-day selection with GRA-K-means[J]. Electric Power Construction, 2021, 42 (7): 110- 117.
DOI |
|
9 |
梁智, 孙国强, 卫志农, 等. 基于变量选择与高斯过程回归的短期负荷预测[J]. 电力建设, 2017, 38 (2): 122- 128.
DOI |
LIANG Zhi, SUN Guoqiang, WEI Zhinong, et al. Short-term load forecasting based on variable selection and Gaussian process regression[J]. Electric Power Construction, 2017, 38 (2): 122- 128.
DOI |
|
10 | MNIH V, HEESS N, GRAVES A, et al. Recurrent models of visual attention[EB/OL]. 2014: arXiv: 1406.6247.https://arxiv.org/abs/1406.6247. |
11 |
YUAN K, ZHANG K F, ZHENG Y X, et al. Irregular distribution of wind power prediction[J]. Journal of Modern Power Systems and Clean Energy, 2018, 6 (6): 1172- 1180.
DOI |
12 |
WANG Y, HU Q H, MENG D Y, et al. Deterministic and probabilistic wind power forecasting using a variational Bayesian-based adaptive robust multi-kernel regression model[J]. Applied Energy, 2017, 208, 1097- 1112.
DOI |
13 |
WANG Z, WANG W S, LIU C, et al. Short-term probabilistic forecasting for regional wind power using distance-weighted kernel density estimation[J]. IET Renewable Power Generation, 2018, 12 (15): 1725- 1732.
DOI |
14 |
阎洁, 刘永前, 韩爽, 等. 分位数回归在风电功率预测不确定性分析中的应用[J]. 太阳能学报, 2013, 34 (12): 2101- 2107.
DOI |
YAN Jie, LIU Yongqian, HAN Shuang, et al. Quantile regression in uncertainty analysis of wind power forecasting[J]. Acta Energiae Solaris Sinica, 2013, 34 (12): 2101- 2107.
DOI |
|
15 | CANNON A J. Quantile regression neural networks: implementation in R and application to precipitation downscaling[J]. Computers & Geosciences, 2011, 37 (9): 1277- 1284. |
16 |
WAN C, LIN J, WANG J H, et al. Direct quantile regression for nonparametric probabilistic forecasting of wind power generation[J]. IEEE Transactions on Power Systems, 2017, 32 (4): 2767- 2778.
DOI |
17 |
WANG H Z, WANG G B, LI G Q, et al. Deep belief network based deterministic and probabilistic wind speed forecasting approach[J]. Applied Energy, 2016, 182, 80- 93.
DOI |
18 |
李丹, 张远航, 杨保华, 等. 基于约束并行LSTM分位数回归的短期电力负荷概率预测方法[J]. 电网技术, 2021, 45 (4): 1356- 1364.
DOI |
LI Dan, ZHANG Yuanhang, YANG Baohua, et al. Short time power load probabilistic forecasting based on constrained parallel-LSTM neural network quantile regression mode[J]. Power System Technology, 2021, 45 (4): 1356- 1364.
DOI |
|
19 | GUO T, LIN T, ANTULOV-FANTULIN N. Exploring interpretable LSTM neural networks over multi-variable data[EB/OL]. 2019: arXiv: 1905.12034.https://arxiv.org/abs/1905.12034. |
20 |
LI A, XIAO F, ZHANG C, et al. Attention-based interpretable neural network for building cooling load prediction[J]. Applied Energy, 2021, 299, 117238.
DOI |
21 |
HE X N, HE Z K, SONG J K, et al. NAIS: neural attentive item similarity model for recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2018, 30 (12): 2354- 2366.
DOI |
22 |
HU J M, TANG J W, LIN Y Y. A novel wind power probabilistic forecasting approach based on joint quantile regression and multi-objective optimization[J]. Renewable Energy, 2020, 149, 141- 164.
DOI |
23 | CIPOLLA R, GAL Y, KENDALL A. Multi-task learning using uncertainty to weigh losses for scene geometry and semantics[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. IEEE, 2018: 7482–7491. |
24 | 万灿, 崔文康, 宋永华. 新能源电力系统概率预测: 基本概念与数学原理[J]. 中国电机工程学报, 2021, 41 (19): 6493- 6509. |
WAN Can, CUI Wenkang, SONG Yonghua. Probabilistic forecasting for power systems with renewable energy sources: basic concepts and mathematical principles[J]. Proceedings of the CSEE, 2021, 41 (19): 6493- 6509. | |
25 |
WAN C, NIU M, SONG Y H, et al. Pareto optimal prediction intervals of electricity price[J]. IEEE Transactions on Power Systems, 2017, 32 (1): 817- 819.
DOI |
[1] | 丰力, 张莲梅, 韦家佳, 邓长虹, 李果, 尹家悦. 基于全生命周期经济评估的海上风电发展与思考[J]. 中国电力, 2024, 57(9): 80-93. |
[2] | 姜文瑾, 刘巧妹, 杨晓东, 阙定飞, 沈豫, 黄夏楠, 赖振华. 计及气固两相储氢特性的海上风电-多元储能系统优化配置[J]. 中国电力, 2024, 57(9): 103-112. |
[3] | 黄宁泊, 高建伟, 许传博, 徐选华, 赵舒通, 缑迅杰, 姜晓静. 基于经验挖掘与混合语言的海上风电制氢加氢港口选址研究[J]. 中国电力, 2024, 57(9): 113-123. |
[4] | 叶婧, 蔡俊文, 张磊, 周广浩, 何杰辉, 翟学. 考虑海缆实际载流量的海上风电集电系统拓扑优化[J]. 中国电力, 2024, 57(7): 173-181. |
[5] | 陈中飞, 赵越, 蔡秋娜, 张乔榆, 王泽林, 戴晓娟, 陈雨果. 基于净负荷预测误差统计的电力系统爬坡能力充裕度评估[J]. 中国电力, 2024, 57(5): 50-60. |
[6] | 高岩, 吴汉斌, 张纪欣, 张华铭, 张沛. 基于组合深度学习的光伏功率日前概率预测模型[J]. 中国电力, 2024, 57(4): 100-110. |
[7] | 阎洁, 杨佳琳, 王航宇, 卢姣阳, 刘永前, 张磊. 基于风况预测误差自适应的海上风电场尾流偏转控制方法[J]. 中国电力, 2024, 57(3): 190-196. |
[8] | 陈璨, 苏紫诺, 马原, 刘佳林, 王玉庆, 王飞. 基于分层关联性建模的分布式光伏功率超短期概率预测[J]. 中国电力, 2024, 57(12): 50-59. |
[9] | 吴晓刚, 阎洁, 葛畅, 唐雅洁, 倪筹帷, 季青锋. 基于改进GRU-CNN的风光水一体化超短期功率预测方法[J]. 中国电力, 2023, 56(9): 178-186,205. |
[10] | 叶婧, 周广浩, 张磊, 杨莉, 翟学, 蔡俊文. 考虑馈线交叉规避的海上风电场海缆路径优化[J]. 中国电力, 2023, 56(6): 167-175. |
[11] | 苏开元, 董文凯, 邱银锋, 魏澈, 谢小荣. 分散式风储一体化系统提升海上油田群电网频率稳定性研究[J]. 中国电力, 2023, 56(5): 163-171. |
[12] | 杨舒婷, 陈新, 黄通, 魏麒璇. 考虑MMC环流控制的海上风电经柔直送出系统阻抗塑造方法[J]. 中国电力, 2023, 56(4): 38-45. |
[13] | 陆友文, 崔昊, 陈佳宁, 彭祥佳, 冯双, 刘栋. 基于RA-CNN和同步相量的风电场次/超同步振荡参数智能辨识方法[J]. 中国电力, 2023, 56(4): 46-55,67. |
[14] | 王朝辉, 黄松阁, 林斌, 陈雨薇, 范淑敏, 施朝晖. 基于海上风电场区66 kV集电系统海缆最大截面经济性分析[J]. 中国电力, 2023, 56(11): 20-28. |
[15] | 周震震, 宋云海, 何宇浩, 王黎伟, 黄和燕, 何珏, 朱志航, 闫云凤. 基于分组查询注意力的可扩展电力人员行为分类方法[J]. 中国电力, 2023, 56(11): 77-85. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||