中国电力 ›› 2023, Vol. 56 ›› Issue (9): 178-186,205.DOI: 10.11930/j.issn.1004-9649.202209120

• 新能源 • 上一篇    下一篇

基于改进GRU-CNN的风光水一体化超短期功率预测方法

吴晓刚1, 阎洁2, 葛畅2, 唐雅洁3, 倪筹帷3, 季青锋1   

  1. 1. 国网浙江省电力有限公司丽水供电公司,浙江 丽水 323000;
    2. 新能源电力系统国家重点实验室(华北电力大学),北京 102206;
    3. 国网浙江省电力有限公司电力科学研究院,浙江 杭州 310014
  • 收稿日期:2022-09-29 修回日期:2023-08-18 发布日期:2023-09-20
  • 作者简介:吴晓刚(1972-),男,高级工程师,从事电力系统调度运行、保护自动化技术研究,E-mail:wuxiaogang@zj.sgcc.com.cn;阎洁(1987-),女,通信作者,博士,教授,从事风功率预测、风电场运行控制技术研究,E-mail:yanjie@ncepu.edu.cn
  • 基金资助:
    国网浙江省电力公司科技项目(浙江丽水公司分布式清洁能源系统多尺度功率预测技术研究,5211LS21N003)。

Ultra-Short-Term Power Forecasting Method for Wind-Solar-Hydro Integration Based on Improved GRU-CNN

WU Xiaogang1, YAN Jie2, GE Chang2, TANG Yajie3, NI Chouwei3, JI Qingfeng1   

  1. 1. Lishui Power Supply Company of State Grid Zhejiang Power Co., Ltd., Lishui 323000, China;
    2. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China;
    3. Electric Power Research Institute of State Grid Zhejiang Electric Power Co., Ltd., Hangzhou 310014, China
  • Received:2022-09-29 Revised:2023-08-18 Published:2023-09-20
  • Supported by:
    This work is supported by Science and Technology Project of State Grid Zhejiang Electric Power Co., Ltd. (No.5211LS21N003).

摘要: 风、光、水能源系统模型差异性大,相互存在多重不确定性,高精度的风、光、水功率预测是充分发挥风、光、水互补特性的重要前提。为此,基于门控循环单元(GRU)及卷积神经网络(CNN),提出了一种能够考虑异质能源时序特性及空间关联特性的一体化超短期功率预测方法。先分析了区域内不同场站不同数据的关联特性,再通过引入时序注意力机制,基于改进的GRU-CNN网络,建立了历史气象、功率数据与未来功率数据的映射关系,实现了多场站联合超短期预测。算例结果表明:所提预测方法能够实现区域风光水电站的一体化高精度超短期功率预测,效果优于单场预测及常规联合预测方法,且有着更高的建模效率。

关键词: 风光水一体化预测, 超短期功率预测, 联合预测, 注意力机制

Abstract: The models of wind, solar, and hydro energy systems are very different, and there are multiple uncertainties among them. High-precision power forecasting technology for wind, solar, and hydro is an important prerequisite for giving full play to the complementary characteristics of wind, solar, and hydro. To this end, an integrated ultra-short-term power forecasting method is proposed based on gated recurrent units (GRUs) and convolutional neural networks (CNNs), which can consider the temporal and spatial correlation characteristics of heterogeneous energy sources. Firstly, the correlation characteristics of different data of different stations in the area are analyzed, and then, by introducing a temporal attention mechanism, the mapping relationship between historical meteorological/power data and future power data is established based on the improved GRU-CNN network, which realizes the multi-station integrated ultra-short-term forecasting. The calculation example results show that the forecasting method proposed in this paper can realize the integrated high-precision ultra-short-term power forecasting of regional wind, solar, and hydro power stations, and the model effect is better than the single-field forecasting method and general integrated forecasting method, with higher modeling efficiency.

Key words: wind-solar-hydro integration forecasting, ultra-short-term power forecasting, integrated forecasting, attention mechanism