中国电力 ›› 2024, Vol. 57 ›› Issue (12): 60-70.DOI: 10.11930/j.issn.1004-9649.202403112

• 面向新型电力系统的源荷预测技术 • 上一篇    下一篇

基于相似时段匹配与Transformer网络建模的分布式光伏超短期功率预测方法

杨鹏伟1(), 赵丽萍1, 陈军法2, 甄钊3(), 王飞3,4,5, 李利明6   

  1. 1. 国网冀北电力有限公司张家口供电公司,河北 张家口 075000
    2. 北京送变电有限公司,北京 102401
    3. 华北电力大学 电力工程系,河北 保定 071003
    4. 新能源电力系统全国重点实验室(华北电力大学),北京 102206
    5. 河北省分布式储能与微网重点实验室(华北电力大学),河北 保定 071003
    6. 北京清电科技有限公司,北京 100190
  • 收稿日期:2024-03-27 出版日期:2024-12-28 发布日期:2024-12-27
  • 作者简介:杨鹏伟(1984—),硕士,高级工程师,从事配网生产研究,E-mail:ypw0508@gmail.com
    甄钊(1989—),通信作者,博士(后),讲师,从事光伏发电功率预测、风电功率预测、电价与电量预测研究,E-mail:zhenzhao@ncepu.edu.cn
  • 基金资助:
    国网冀北电力有限公司张家口供电公司科技项目(新型有源配电网分布式光伏发电集群功率预测关键技术研究与示范, SGJBZJ00PWJS2310934);国家自然科学基金资助项目(52007092)。

Distributed Photovoltaic Ultra-short-term Power Forecasting Method Based on Temporal Analog Matching Approach and Transformer Network Modeling

Pengwei YANG1(), Liping ZHAO1, Junfa CHEN2, Zhao ZHEN3(), Fei WANG3,4,5, Liming LI6   

  1. 1. Zhangjiakou Power Supply Company, State Grid Jibei Electric Power Co., Ltd., Zhangjiakou 075000, China
    2. Beijing Power Transmission and Distribution Co., Ltd., Beijing 102401, China
    3. Department of Power Engineering, North China Electric Power University, Baoding 071003, China
    4. State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources (North China Electric Power University), Beijing 102206, China
    5. Hebei Key Laboratory of Distributed Energy Storage and Microgrid (North China Electric Power University), Baoding 071003, China
    6. Beijing Tsingdian Technology Co., Ltd., Beijing 100190, China
  • Received:2024-03-27 Online:2024-12-28 Published:2024-12-27
  • Supported by:
    This work is supported by Science &Technology Project of State Grid Jibei Electric Power Co., Ltd. Zhangjiakou Power Supply Company (Research and Demonstration of Key Technologies for Power Forecasting of Distributed Photovoltaic Power Generation Cluster in New Active Distribution Network, No.SGJBZJ00PWJS2310934), National Natural Science Foundation of China (No.52007092).

摘要:

由于缺乏气象数据,分布式光伏在天气骤变场景下预测精度不高,提出了一种基于相似时段匹配与Transformer网络建模的分布式光伏超短期功率预测方法。首先,将相似时段概念由日扩展至更灵活的时间段,并提出了一种历史功率与卫星遥感信息融合的匹配策略,旨在无须依赖气象数据的情况下,高效识别出对预测最为关键的相似功率时段。在此基础上,融合Transformer网络的强大时序建模能力,动态解析多源相似时段中的隐藏关联,深入挖掘功率关键特征信息,从而为天气骤变条件下的分布式光伏系统提供更为精确的超短期功率预测。最后,通过实际分布式光伏功率数据验证了所提方法的有效性。

关键词: 分布式光伏, 相似时段, Transformer模型, 超短期功率预测, 卫星遥感信息

Abstract:

To address the challenge of low prediction accuracy of distributed photovoltaic (PV) power generation under sudden weather change scenarios due to the lack of meteorological data, this paper proposes a distributed PV ultra-short-term power prediction method based on temporal analog matching approach (TAMA) and Transformer network modeling. Firstly, the concept of similar time periods is extended from days to more flexible time periods, and a matching strategy integrating historical power and satellite remote sensing information is proposed to efficiently identify the most critical time periods of similar power for prediction without relying on meteorological data. Based on this, the powerful temporal modeling capability of the Transformer network is used to dynamically resolve the hidden correlations in multi-source similar time periods, and deeply mine the key features of power, thus providing more accurate ultra-short-term power prediction for distributed PV systems under sudden weather change conditions. Finally, the effectiveness of the proposed method is verified through actual distributed PV power generation data.

Key words: distributed PV power, similar time periods, transformer model, ultra-short-term power forecasting, satellite remote sensing information