中国电力 ›› 2024, Vol. 57 ›› Issue (12): 60-70.DOI: 10.11930/j.issn.1004-9649.202403112
杨鹏伟1(), 赵丽萍1, 陈军法2, 甄钊3(
), 王飞3,4,5, 李利明6
收稿日期:
2024-03-27
出版日期:
2024-12-28
发布日期:
2024-12-27
作者简介:
杨鹏伟(1984—),硕士,高级工程师,从事配网生产研究,E-mail:ypw0508@gmail.com基金资助:
Pengwei YANG1(), Liping ZHAO1, Junfa CHEN2, Zhao ZHEN3(
), Fei WANG3,4,5, Liming LI6
Received:
2024-03-27
Online:
2024-12-28
Published:
2024-12-27
Supported by:
摘要:
由于缺乏气象数据,分布式光伏在天气骤变场景下预测精度不高,提出了一种基于相似时段匹配与Transformer网络建模的分布式光伏超短期功率预测方法。首先,将相似时段概念由日扩展至更灵活的时间段,并提出了一种历史功率与卫星遥感信息融合的匹配策略,旨在无须依赖气象数据的情况下,高效识别出对预测最为关键的相似功率时段。在此基础上,融合Transformer网络的强大时序建模能力,动态解析多源相似时段中的隐藏关联,深入挖掘功率关键特征信息,从而为天气骤变条件下的分布式光伏系统提供更为精确的超短期功率预测。最后,通过实际分布式光伏功率数据验证了所提方法的有效性。
杨鹏伟, 赵丽萍, 陈军法, 甄钊, 王飞, 李利明. 基于相似时段匹配与Transformer网络建模的分布式光伏超短期功率预测方法[J]. 中国电力, 2024, 57(12): 60-70.
Pengwei YANG, Liping ZHAO, Junfa CHEN, Zhao ZHEN, Fei WANG, Liming LI. Distributed Photovoltaic Ultra-short-term Power Forecasting Method Based on Temporal Analog Matching Approach and Transformer Network Modeling[J]. Electric Power, 2024, 57(12): 60-70.
图 9 匹配时段的卫星遥感数据MSSIM和待预测时段的功率皮尔逊相关系数
Fig.9 Satellite remote sensing data MSSIM during matching time period and Pearson correlation coefficient during predicted time period
方法 | 多数为晴天 | 多数为云蓬 | 多数为云密 | |||
LSTM | 1.77 | 1.85 | 1.89 | |||
Transformer | 1.66 | 1.67 | 1.71 | |||
TAMA+LSTM | 1.64 | 1.76 | 1.78 | |||
TAMA +Transformer | 1.53 | 1.58 | 1.68 |
表 1 预测模型的RMSE误差对比
Table 1 Comparison of RMSE errors of different forecasting models
方法 | 多数为晴天 | 多数为云蓬 | 多数为云密 | |||
LSTM | 1.77 | 1.85 | 1.89 | |||
Transformer | 1.66 | 1.67 | 1.71 | |||
TAMA+LSTM | 1.64 | 1.76 | 1.78 | |||
TAMA +Transformer | 1.53 | 1.58 | 1.68 |
方法 | 多数为晴天 | 多数为云蓬 | 多数为云密 | |||
LSTM | 1.41 | 1.48 | 1.52 | |||
Transformer | 1.38 | 1.35 | 1.48 | |||
TAMA+LSTM | 1.36 | 1.41 | 1.46 | |||
TAMA +Transformer | 1.26 | 1.31 | 1.37 |
表 2 预测模型的MAE误差对比
Table 2 Comparison of MAE errors of different forecasting models
方法 | 多数为晴天 | 多数为云蓬 | 多数为云密 | |||
LSTM | 1.41 | 1.48 | 1.52 | |||
Transformer | 1.38 | 1.35 | 1.48 | |||
TAMA+LSTM | 1.36 | 1.41 | 1.46 | |||
TAMA +Transformer | 1.26 | 1.31 | 1.37 |
1 | 国家能源局. 2023年上半年光伏发电建设运行情况[EB/OL]. (2023-07-27) [2023-12-15]. http://www.nea.gov.cn/2023-07/27/c_1310734298.htm. |
2 | 高岩, 吴汉斌, 张纪欣, 等. 基于组合深度学习的光伏功率日前概率预测模型[J]. 中国电力, 2024, 57 (4): 100- 110. |
GAO Yan, WU Hanbin, ZHANG Jixin, et al. Probabilistic forecasting model for day-ahead power generation of centralized photovoltaic stations based on combine deep learning[J]. Electric Power, 2024, 57 (4): 100- 110. | |
3 | 顼佳宇, 李伟, 宋宝同, 等. 分布式光伏接入配电网适应性评估 [J/OL]. 电测与仪表, 1–8[2023-11-13] http://kns.cnki.net/kcms/detail/23.1202.TH.20220602.1656.006.html. |
XIANG Jiayu, LI Wei, SONG Baotong, et al. Adaptability evaluation of distributed photovoltaic access distribution network[J/OL]. Electrical Measurement & Instrumentation, 1–8[2023-11-13] http://kns.cnki.net/kcms/detail/23.1202.TH.20220602.1656.006.html. | |
4 | 阮呈隆, 李康平, 李正辉, 等. 分布式光伏集群功率短期预测的空间互补特性初探[J]. 电力系统自动化, 2024, 48 (3): 42- 50. |
RUAN Chenglong, LI Kangping, LI Zhenghui, et al. Preliminary study on spatial complementarity characteristics of short-term power forecasting for distributed photovoltaic clusters[J]. Automation of Electric Power Systems, 2024, 48 (3): 42- 50. | |
5 |
LI K P, YAN J C, HU L, et al. Two-stage decoupled estimation approach of aggregated baseline load under high penetration of behind-the-meter PV system[J]. IEEE Transactions on Smart Grid, 2021, 12 (6): 4876- 4885.
DOI |
6 |
WANG F, GE X X, DONG Z B, et al. Joint energy disaggregation of behind-the-meter PV and battery storage: a contextually supervised source separation approach[J]. IEEE Transactions on Industry Applications, 2022, 58 (2): 1490- 1501.
DOI |
7 |
MAYER M J, GRÓF G. Extensive comparison of physical models for photovoltaic power forecasting[J]. Applied Energy, 2021, 283, 116239.
DOI |
8 | 黄莉, 甘恒玉, 刘兴举, 等. 基于Transformer编码器的超短期光伏发电功率预测[J]. 智慧电力, 2024, 52 (5): 16- 22, 59. |
HUANG Li, GAN Hengyu, LIU Xingju, et al. Ultra-short-term photovoltaic power generation prediction based on transformer encoder[J]. Smart Power, 2024, 52 (5): 16- 22, 59. | |
9 | 张海涛, 李文娟, 李雪峰, 等. 基于变分模态分解和时间注意力机制TCN网络的光伏发电功率预测[J/OL]. 电测与仪表: 1–8 [2024-05-25]. http://kns.cnki.net/kcms/detail/23.1202.th.20240510.1542.003.html. |
ZHANG Haitao, LI Wenjuan, LI Xuefeng, et al. Photovoltaic power forecasting based on TPA-TCN model and variational modal decomposition[J/OL]. Electrical Measurement & Instrumentation: 1–8 [2024-05-25]. http://kns.cnki.net/kcms/detail/23.1202.th.20240510.1542.003.html. | |
10 | 张家安, 王琨玥, 陈建, 等. 基于空间相关性的分布式光伏出力预测[J]. 电力建设, 2020, 41 (3): 47- 53. |
ZHANG Jiaan, WANG Kunyue, CHEN Jian, et al. Research on prediction of distributed photovoltaic output considering spatial relevance[J]. Electric Power Construction, 2020, 41 (3): 47- 53. | |
11 | 王彪, 吕洋, 陈中, 等. 考虑信息时移的分布式光伏机理-数据混合驱动短期功率预测[J]. 电力系统自动化, 2022, 46 (11): 67- 74. |
WANG Biao, LYU Yang, CHEN Zhong, et al. Hybrid mechanism-data-driven short-term power forecasting of distributed photovoltaic considering information time shift[J]. Automation of Electric Power Systems, 2022, 46 (11): 67- 74. | |
12 |
ZHANG M, ZHEN Z, LIU N, et al. Optimal graph structure based short-term solar PV power forecasting method considering surrounding spatio-temporal correlations[J]. IEEE Transactions on Industry Applications, 2023, 59 (1): 345- 357.
DOI |
13 | 王玉庆, 徐飞, 刘志坚, 等. 基于动态关联表征与图网络建模的分布式光伏超短期功率预测[J]. 电力系统自动化, 2023, 47 (20): 72- 82. |
WANG Yuqing, XU Fei, LIU Zhijian, et al. Ultra-short-term power forecasting of distributed photovoltaic based on dynamic correlation characterization and graph network modeling[J]. Automation of Electric Power Systems, 2023, 47 (20): 72- 82. | |
14 | 赵洪山, 孙承妍, 温开云, 等. 无气象信息条件下基于AGCRN的分布式光伏出力超短期预测方法[J]. 高电压技术, 2024, 50 (1): 65- 73. |
ZHAO Hongshan, SUN Chengyan, WEN Kaiyun, et al. Ultra-short-term prediction of distributed photovoltaic power method based on AGCRN in the absence of meteorological information[J]. High Voltage Engineering, 2024, 50 (1): 65- 73. | |
15 | WANG Y Q, FU W J, ZHANG X D, et al. Dynamic directed graph convolution network based ultra-short-term forecasting method of distributed photovoltaic power to enhance the resilience and flexibility of distribution network[J]. IET Generation, Transmission & Distribution, 2024, 18 (2): 337- 352. |
16 | 臧海祥, 程礼临, 刘玲, 等. 基于数据驱动的太阳辐射估计和预测研究与展望[J]. 电力系统自动化, 2021, 45 (11): 170- 183. |
ZANG Haixiang, CHENG Lilin, LIU Ling, et al. Research and prospect for data-driven estimation and prediction of solar radiation[J]. Automation of Electric Power Systems, 2021, 45 (11): 170- 183. | |
17 | 王涛, 王旭, 许野, 等. 计及相似日的LSTM光伏出力预测模型研究[J]. 太阳能学报, 2023, 44 (8): 316- 323. |
WANG Tao, WANG Xu, XU Ye, et al. Study on LSTM photovoltaic output prediction model considering similar days[J]. Acta Energiae Solaris Sinica, 2023, 44 (8): 316- 323. | |
18 | 李超然, 潘鹏程, 杨伟荣, 等. 基于改进相似日优化HBA-BiLSTM-KELM的光伏发电功率预测[J]. 太阳能学报, 2024, 45 (5): 508- 516. |
LI Chaoran, PAN Pengcheng, YANG Weirong, et al. Research on PV system power forecasting based on improved similar day and HBA-BiLSTM-KELM neural network[J]. Acta Energiae Solaris Sinica, 2024, 45 (5): 508- 516. | |
19 |
LIU X J, LIU Y Y, KONG X B, et al. Deep neural network for forecasting of photovoltaic power based on wavelet packet decomposition with similar day analysis[J]. Energy, 2023, 271, 126963.
DOI |
20 | 张青山, 王丽婕, 郝颖, 等. 基于卫星云图和晴空模型的分布式光伏电站太阳辐照度超短期预测[J]. 高电压技术, 2022, 48 (8): 3271- 3281. |
ZHANG Qingshan, WANG Lijie, HAO Ying, et al. Ultra-short-term solar irradiance forecasting of distributed photovoltaic power stations based on satellite cloud images and clear sky model[J]. High Voltage Engineering, 2022, 48 (8): 3271- 3281. | |
21 |
YAN J C, HU L, ZHEN Z, et al. Frequency-domain decomposition and deep learning based solar PV power ultra-short-term forecasting model[J]. IEEE Transactions on Industry Applications, 2021, 57 (4): 3282- 3295.
DOI |
22 | HE K M, GKIOXARI G, DOLLÁR P, et al. Mask R-CNN[C]//2017 IEEE International Conference on Computer Vision (ICCV). Venice, Italy. IEEE, 2017: 2980–2988. |
23 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//NIPS 2017, CA, USA, 2017. |
[1] | 孙通, 张沈习, 曹毅, 曹佳晨, 程浩忠. 计及5G基站可调特性的配电网分布式光伏准入容量鲁棒优化[J]. 中国电力, 2025, 58(2): 140-146. |
[2] | 周才期, 刘静利, 孙鹏凯, 张玉敏. 分布式光伏波动事件多级区间滚动预警方法[J]. 中国电力, 2024, 57(8): 96-107. |
[3] | 王海军, 居蓉蓉, 董颖华. 基于时空关联特征与B-LSTM模型的分布式光伏功率区间预测[J]. 中国电力, 2024, 57(7): 74-80. |
[4] | 刘韵艺, 汤渊, 苏盛, 吴裕宙, 王晓倩. 基于STL-Bayesian时空模型的分布式光伏系统异常检测[J]. 中国电力, 2024, 57(5): 222-231. |
[5] | 张宇, 魏新迟, 冯凯辉, 时珊珊, 孟子涵, 梁媛. 计及分布式光伏承载力的配电网侧独立储能充放电策略[J]. 中国电力, 2024, 57(4): 111-117. |
[6] | 陈璨, 苏紫诺, 马原, 刘佳林, 王玉庆, 王飞. 基于分层关联性建模的分布式光伏功率超短期概率预测[J]. 中国电力, 2024, 57(12): 50-59. |
[7] | 陈奇芳, 李若凡, 夏明超, 吴迪, 邵尹池. 计及多维性能评估的新型配电网光伏选址定容方法[J]. 中国电力, 2024, 57(10): 172-178, 207. |
[8] | 吴晓刚, 阎洁, 葛畅, 唐雅洁, 倪筹帷, 季青锋. 基于改进GRU-CNN的风光水一体化超短期功率预测方法[J]. 中国电力, 2023, 56(9): 178-186,205. |
[9] | 白晶, 金广厚, 孙鹤林, 胡楚樊, 赵晋泉, 陈天华. 高渗透光伏配电网第三方主体调压辅助服务补偿与获取[J]. 中国电力, 2023, 56(4): 95-103,111. |
[10] | 王晶, 袁懿, 邵尹池, 张晋奇, 丁然, 巩彦江. 考虑资源储备度的主动配电网多目标集群划分与电压控制方法[J]. 中国电力, 2023, 56(12): 69-79. |
[11] | 段瑶, 高崇, 程苒, 吴亚雄, 黄烨, 刘志文. 考虑5G基站可调度潜力的配电网分布式光伏最大准入容量评估[J]. 中国电力, 2023, 56(12): 80-85, 99. |
[12] | 李娟, 汪家铭, 许苏迪, 姜云龙, 杨雄. 基于量子萤火虫算法的配电网故障恢复策略[J]. 中国电力, 2023, 56(12): 191-198. |
[13] | 李世辉, 王琪, 贾晓卜, 吴文传, 梁华洋, 朱琳. 考虑热泵负荷和分布式光伏的配微网协调调度[J]. 中国电力, 2022, 55(9): 29-37. |
[14] | 陈璨, 白明辉, 张婉明, 席海阔, 尹兆磊, 邵尹池, 王枭枭, 马原. 分布式光伏边界渗透率快速定位及消纳方案择优[J]. 中国电力, 2022, 55(8): 40-50. |
[15] | 李丰君, 王磊, 赵健, 张建宾, 张世尧, 田杨阳. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55(11): 149-154. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||