中国电力 ›› 2022, Vol. 55 ›› Issue (11): 149-154.DOI: 10.11930/j.issn.1004-9649.202104057

• 短期电力负荷预测 • 上一篇    下一篇

基于天气融合和LSTM网络的分布式光伏短期功率预测方法

李丰君, 王磊, 赵健, 张建宾, 张世尧, 田杨阳   

  1. 国网河南省电力公司电力科学研究院,河南 郑州 450052
  • 收稿日期:2021-04-29 修回日期:2022-10-09 发布日期:2022-11-29
  • 作者简介:李丰君(1995—),男,硕士,工程师,从事配网运行维护及新能源技术研究,E-mail:lfj951103@163.com
  • 基金资助:
    国家自然科学基金资助项目(62172142);国家电网有限公司科技项目(521702180008)。

Research on Distributed Photovoltaic Short-Term Power Prediction Method Based on Weather Fusion and LSTM-Net

LI Fengjun, WANG Lei, ZHAO Jian, ZHANG Jianbin, ZHANG Shiyao, TIAN Yangyang   

  1. State Grid Henan Electric Power Research Institute, Zhengzhou 450052, China
  • Received:2021-04-29 Revised:2022-10-09 Published:2022-11-29
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.62172142), Science and Technology Project of SGCC (No.521702180008).

摘要: 分布式光伏发电功率高精度预测对配电网安全稳定运行有重要意义。针对分布式光伏发电设备的功率预测问题,基于天气信息和深度学习方法提出了一种分布式光伏短期功率预测方法。首先将天气进行分类融合,实现训练集的全面覆盖;然后基于长短期记忆网络(long short-term memory,LSTM)深度学习方法构建分布式光伏短期功率预测模型;最后实现分布式光伏功率预测。

关键词: 分布式光伏, 光伏发电预测, 深度学习, 短期预测

Abstract: The high-precision prediction of distributed photovoltaic power generation is of great significance to the safe and stable operation of the distribution network. In this paper, based on weather information and depth learning method, a short-term power prediction method for distributed photovoltaic power generation equipment is proposed. First, classify and fuse the weather to achieve full coverage of the training set. Then, build a distributed photovoltaic short-term power prediction model based on the long short-term memory (LSTM) deep learning network. Finally, realize distributed photovoltaic power prediction.

Key words: distributed photovoltaic, photovoltaic power generation forecast, deep learning, short-term forecasting