[1] 雷为民, 罗玮, 苗友忠. 新能源集中接入地区配电网新能源接纳能力分析研究[J]. 电力系统及其自动化学报, 2015, 27(增刊1): 107–113 LEI Weimin, LUO Wei, MIAO Youzhong. Research on capacity of renewable power integrated into power grid with large penetration of renewable energy[J]. Proceedings of the CSU-EPSA, 2015, 27(S1): 107–113 [2] 康龙云, 郭红霞, 吴捷, 等. 分布式电源及其接入电力系统时若干研究课题综述[J]. 电网技术, 2010, 34(11): 43–47 KANG Longyun, GUO Hongxia, WU Jie, et al. Characteristics of distributed generation system and related research issues caused by connecting it to power system[J]. Power System Technology, 2010, 34(11): 43–47 [3] 艾逸阳. 基于地基云图的超短期光伏电站辐照度预测研究[D]. 杭州: 浙江大学, 2018. AI Yiyang. Very short-term solar irradiance forecast based on sky images[D]. Hangzhou: Zhejiang University, 2018. [4] 王诚良, 朱凌志, 党东升, 等. 云团移动对光伏电站出力特性及系统调频的影响[J]. 可再生能源, 2017, 35(11): 1626–1631 WANG Chengliang, ZHU Lingzhi, DANG Dongsheng, et al. Impacts on photovoltaic power characteristics and power system frequency regulation with cloud cluster movement[J]. Renewable Energy Resources, 2017, 35(11): 1626–1631 [5] 朱想, 周海, 朱婷婷, 等. 光伏系统中地基云图的预处理[J]. 电力系统自动化, 2018, 42(6): 140–145,151 ZHU Xiang, ZHOU Hai, ZHU Tingting, et al. Pre-processing of ground-based cloud images in photovoltaic system[J]. Automation of Electric Power Systems, 2018, 42(6): 140–145,151 [6] 王巍. 基于人工神经网络和模拟集成的短期光伏发电预测[J]. 可再生能源, 2019, 37(5): 670–675 WANG Wei. Short-term photovoltaic power generation prediction based on artificial neural network and simulation integration[J]. Renewable Energy Resources, 2019, 37(5): 670–675 [7] 张静, 褚晓红, 黄学安, 等. 一种基于加权马尔科夫链修正的SVM光伏出力预测模型[J]. 电力系统保护与控制, 2019, 47(19): 63–68 ZHANG Jing, CHU Xiaohong, HUANG Xue'an, et al. A model for photovoltaic output prediction based on SVM modified by weighted Markov chain[J]. Power System Protection and Control, 2019, 47(19): 63–68 [8] 孙荣富, 王隆扬, 王玉林, 等. 基于数字孪生的光伏发电功率超短期预测[J]. 电网技术, 2021, 45(4): 1258–1264 SUN Rongfu, WANG Longyang, WANG Yulin, et al. Ultra-short-term prediction of photovoltaic power generation based on digital twins[J]. Power System Technology, 2021, 45(4): 1258–1264 [9] 李芬, 李春阳, 糜强, 等. 基于GRA-BPNN时变权重的光伏短期出力组合预测[J]. 可再生能源, 2018, 36(11): 1605–1611 LI Fen, LI Chunyang, MI Qiang, et al. The time-varying weight ensemble forecasting of short-term photovoltaic power based on GRA-BPNN[J]. Renewable Energy Resources, 2018, 36(11): 1605–1611 [10] 徐岩, 张建浩. 基于AEPSO-BPNN的光伏阵列多场景参数辨识[J]. 智慧电力, 2020, 48(10): 37–44 XU Yan, ZHANG Jianhao. Multi-scene parameter identification of photovoltaic array based on AEPSO-BPNN[J]. Smart Power, 2020, 48(10): 37–44 [11] 张贵涛, 易浩民, 彭显刚. 基于预测模型的光伏并网过电压控制[J]. 智慧电力, 2017, 45(9): 20–25 ZHANG Guitao, YI Haomin, PENG Xiangang. Grid-connected photovoltaic over-voltage control based on prediction model[J]. Smart Power, 2017, 45(9): 20–25 [12] 冉成科, 夏向阳, 杨明圣, 等. 基于日类型及融合理论的BP网络光伏功率预测[J]. 中南大学学报(自然科学版), 2018, 49(9): 2232–2239 RAN Chengke, XIA Xiangyang, YANG Mingsheng, et al. BP network PV power forecast based on daily type and fusion theory[J]. Journal of Central South University (Science and Technology), 2018, 49(9): 2232–2239 [13] 尹宝才, 王文通, 王立春. 深度学习研究综述[J]. 北京工业大学学报, 2015, 41(1): 48–59 YIN Baocai, WANG Wentong, WANG Lichun. Review of deep learning[J]. Journal of Beijing University of Technology, 2015, 41(1): 48–59 [14] 郭丽丽, 丁世飞. 深度学习研究进展[J]. 计算机科学, 2015, 42(5): 28–33 GUO Lili, DING Shifei. Research progress on deep learning[J]. Computer Science, 2015, 42(5): 28–33 [15] 张宇航, 邱才明, 贺兴, 等. 一种基于LSTM神经网络的短期用电负荷预测方法[J]. 电力信息与通信技术, 2017, 15(9): 19–25 ZHANG Yuhang, QIU Caiming, HE Xing, et al. A short-term load forecasting based on LSTM neural network[J]. Electric Power Information and Communication Technology, 2017, 15(9): 19–25 [16] 吉锌格, 李慧, 刘思嘉, 等. 基于MIE-LSTM的短期光伏功率预测[J]. 电力系统保护与控制, 2020, 48(7): 50–57 JI Xinge, LI Hui, LIU Sijia, et al. Short-term photovoltaic power forecasting based on MIE-LSTM[J]. Power System Protection and Control, 2020, 48(7): 50–57 [17] 任成国, 肖儿良, 简献忠, 等. EMD-LSTM算法在短期电力负荷预测中的应用[J]. 电力科学与工程, 2019, 35(8): 12–16 REN Chengguo, XIAO Erliang, JIAN Xianzhong, et al. Application research of deep learning in short-term power load forecasting[J]. Electric Power Science and Engineering, 2019, 35(8): 12–16 [18] 王若恒. 基于LSTM的风电功率区间预测研究[D]. 武汉: 华中科技大学, 2018. WANG Ruoheng. The research of interval prediction for wind power based on LSTM network[D]. Wuhan: Huazhong University of Science and Technology, 2018. [19] 龚丁禧, 曹长荣. 基于卷积神经网络的植物叶片分类[J]. 计算机与现代化, 2014(4): 12–15,19 GONG Dingxi, CAO Changrong. Plant leaf classification based on CNN[J]. Computer and Modernization, 2014(4): 12–15,19 [20] 王丹萌. 基于递归神经网络与在线评论挖掘的企业盈利预测[D]. 上海: 华东师范大学, 2017 WANG Danmeng. Earnings forecast based on recurrent neural network and online comments mining[D]. Shanghai: East China Normal University, 2017. [21] 罗文慧, 董宝田, 王泽胜. 基于CNN-SVR混合深度学习模型的短时交通流预测[J]. 交通运输系统工程与信息, 2017, 17(5): 68–74 LUO Wenhui, DONG Baotian, WANG Zesheng. Short-term traffic flow prediction based on CNN-SVR hybrid deep learning model[J]. Journal of Transportation Systems Engineering and Information Technology, 2017, 17(5): 68–74 [22] 杨国清, 张凯, 王德意, 等. 基于包络线聚类的多模融合超短期光伏功率预测算法[J]. 电力自动化设备, 2021, 41(2): 39–46 YANG Guoqing, ZHANG Kai, WANG Deyi, et al. Multi-mode fusion ultra-short-term photovoltaic power prediction algorithm based on envelope clustering[J]. Electric Power Automation Equipment, 2021, 41(2): 39–46 [23] 谭津, 邓长虹, 杨威, 等. 微电网光伏发电的Adaboost天气聚类超短期预测方法[J]. 电力系统自动化, 2017, 41(21): 33–39 TAN Jin, DENG Changhong, YANG Wei, et al. Ultra-short-term photovoltaic power forecasting in microgrid based on adaboost clustering[J]. Automation of Electric Power Systems, 2017, 41(21): 33–39 [24] 赵会茹, 赵一航, 郭森. 基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测[J]. 中国电力, 2020, 53(6): 48–55 ZHAO Huiru, ZHAO Yihang, GUO Sen. Short-term load forecasting based on complementary ensemble empirical mode decomposition and long short-term memory[J]. Electric Power, 2020, 53(6): 48–55 [25] 陈亮, 王震, 王刚. 深度学习框架下LSTM网络在短期电力负荷预测中的应用[J]. 电力信息与通信技术, 2017, 15(5): 8–11 CHEN Liang, WANG Zhen, WANG Gang. Application of LSTM networks in short-term power load forecasting under the deep learning framework[J]. Electric Power Information and Communication Technology, 2017, 15(5): 8–11
|