中国电力 ›› 2024, Vol. 57 ›› Issue (4): 162-170.DOI: 10.11930/j.issn.1004-9649.202303085
收稿日期:
2023-03-20
接受日期:
2024-01-12
出版日期:
2024-04-28
发布日期:
2024-04-26
作者简介:
邵必林(1965—),男,通信作者,硕士,教授,从事大数据、数据信息与管理,E-mail:sblin0426@163.com基金资助:
Received:
2023-03-20
Accepted:
2024-01-12
Online:
2024-04-28
Published:
2024-04-26
Supported by:
摘要:
为提高电力负荷的预测精度,提出一种基于VMD-SE的电力负荷分量的多特征短期预测方法。首先采用变分模态分解(VMD)将原始负荷分解为一系列模态分量与残差,VMD的分解层数由样本熵值(sample entropy,SE)确定;然后对比原始负荷与模态分量的SE值,重构为平稳分量和波动分量,来降低运算规模;同时利用皮尔逊相关系数来筛选特征变量,删除特征冗余,建立灰狼算法优化后的支持向量回归模型(GWO-SVR)和长短期记忆神经网络(LSTM)分别对平稳分量和波动分量预测;最后以某地区2018—2020年用电负荷为例进行实验。实验证明:此模型精准度高达94.7%,平均绝对百分误差降低到2.98%,具有更好的精准性和适用性。
邵必林, 纪丹阳. 基于VMD-SE的电力负荷分量的多特征短期预测[J]. 中国电力, 2024, 57(4): 162-170.
Bilin SHAO, Danyang JI. Multi-feature Short-term Prediction of Power Load Components Based on VMD-SE[J]. Electric Power, 2024, 57(4): 162-170.
特征变量 | 相关度 | 特征变量 | 相关度 | 特征变量 | 相关度 | |||||
最高温度 | 0.715 | 相对湿度 | 0.122 | 前一天负荷 | 0.950 | |||||
最低温度 | 0.656 | 降雨量 | 0.119 | 前两天负荷 | 0.889 | |||||
平均温度 | 0.740 | 工作日 | 0.147 | 前三天负荷 | 0.855 |
表 1 特征相关度
Table 1 Feature correlation
特征变量 | 相关度 | 特征变量 | 相关度 | 特征变量 | 相关度 | |||||
最高温度 | 0.715 | 相对湿度 | 0.122 | 前一天负荷 | 0.950 | |||||
最低温度 | 0.656 | 降雨量 | 0.119 | 前两天负荷 | 0.889 | |||||
平均温度 | 0.740 | 工作日 | 0.147 | 前三天负荷 | 0.855 |
预测模型 | R2 | EMAPE/% | EMAE/MW | ERMSE/MW | ||||
SVR | 0.828 | 5.278 | 446.76 | 593.5 | ||||
GWO-SVR | 0.878 | 4.325 | 372.51 | 501.5 | ||||
PSO-SVR | 0.872 | 4.34 | 375.02 | 512.4 | ||||
ELM | 0.843 | 5.027 | 433.29 | 568.2 | ||||
LSTM | 0.922 | 3.275 | 296.35 | 358.2 | ||||
GWO-SVR+LSTM | 0.947 | 2.98 | 261.6 | 348.8 |
表 2 各模型评价指标对比
Table 2 Comparison of model evaluation indicators
预测模型 | R2 | EMAPE/% | EMAE/MW | ERMSE/MW | ||||
SVR | 0.828 | 5.278 | 446.76 | 593.5 | ||||
GWO-SVR | 0.878 | 4.325 | 372.51 | 501.5 | ||||
PSO-SVR | 0.872 | 4.34 | 375.02 | 512.4 | ||||
ELM | 0.843 | 5.027 | 433.29 | 568.2 | ||||
LSTM | 0.922 | 3.275 | 296.35 | 358.2 | ||||
GWO-SVR+LSTM | 0.947 | 2.98 | 261.6 | 348.8 |
1 |
JAHAN I S, SNASEL V, MISAK S. Intelligent systems for power load forecasting: a study review[J]. Energies, 2020, 13 (22): 6105.
DOI |
2 |
BEDI J, TOSHNIWAL D. Empirical mode decomposition based deep learning for electricity demand forecasting[J]. IEEE Access, 2018, 6, 49144- 49156.
DOI |
3 | QU H R, ZHANG R N. Short-term mathematical prediction model of air quality based on CEEMD-ELM-PSO[C]//2022 IEEE International Conference on Electrical Engineering, Big Data and Algorithms (EEBDA). Changchun, China. IEEE, 2022: 227–232. |
4 | 方娜, 陈浩, 邓心, 等. 基于VMD-ARIMA-DBN的短期电力负荷预测[J]. 电力系统及其自动化学报, 2023, 35 (6): 59- 65. |
FANG Na, CHEN Hao, DENG Xin, et al. Short-term power load forecasting based on VMD-ARIMA-DBN[J]. Proceedings of the CSU-EPSA, 2023, 35 (6): 59- 65. | |
5 | 邓带雨, 李坚, 张真源, 等. 基于EEMD-GRU-MLR的短期电力负荷预测[J]. 电网技术, 2020, 44 (2): 593- 602. |
DENG Daiyu, LI Jian, ZHANG Zhenyuan, et al. Short-term electric load forecasting based on EEMD-GRU-MLR[J]. Power System Technology, 2020, 44 (2): 593- 602. | |
6 |
段明明, 杨捷, 李沛霖. 基于小波和径向基函数神经网络的电力负荷预测研究[J]. 云南大学学报(自然科学版), 2020, 42 (S2): 18- 25.
DOI |
DUAN Mingming, YANG Jie, LI Peilin. The research on power load forecasting based on wavelet and radical basis function neural network[J]. Journal of Yunnan University, 2020, 42 (S2): 18- 25.
DOI |
|
7 | WEI N, LI C J, PENG X L, et al. Daily natural gas consumption forecasting via the application of a novel hybrid model[J]. Applied Energy, 2019, 250, 358- 368. |
8 |
杨胡萍, 余阳, 汪超, 等. 基于VMD-CNN-BIGRU的电力系统短期负荷预测[J]. 中国电力, 2022, 55 (10): 71- 76.
DOI |
YANG Huping, YU Yang, WANG Chao, et al. Short-term load forecasting of power system based on VMD-CNN-BIGRU[J]. Applied Energy, 2022, 55 (10): 71- 76.
DOI |
|
9 | 石安平, 周吕, 王成, 等. 结合EMD与小波阈值去噪的GB[J]. 测绘通报, 2022, (增刊2): 227- 232, 240. |
10 |
刁涵彬, 李培强, 郭思源, 等. PMU小扰动信号下的综合负荷模型参数辨识方法[J]. 电力系统保护与控制, 2023, 51 (13): 37- 49.
DOI |
DIAO Hanbin, LI Peiqiang, GUO Siyuan, et al. Parameter identification method of composite load model using small disturbance signal of PMU[J]. Power System Protection and Control, 2023, 51 (13): 37- 49.
DOI |
|
11 | 陆磊, 张铭飞, 朱浩钰. 基于VMD-IPSO-LSSVM的短期电力负荷预测研究[J]. 电工技术, 2022, (24): 175- 178, 197. |
LU Lei, ZHANG Mingfei, ZHU Haoyu. Research on short-term power load forecasting based on VMD-IPSO-LSSVM[J]. Electric Engineering, 2022, (24): 175- 178, 197. | |
12 |
李雪冬, 黄莹, 胡勇, 等. 基于PAU-LSSVM模型融合多特征变量的电力负荷预测[J]. 电子器件, 2021, 44 (2): 474- 479.
DOI |
LI Xuedong, HUANG Ying, HU Yong, et al. Multiple-feature power load forecasting based on PAU-LSSVM model[J]. Chinese Journal of Electron Devices, 2021, 44 (2): 474- 479.
DOI |
|
13 |
HAFEEZ G, KHAN I, JAN S, et al. A novel hybrid load forecasting framework with intelligent feature engineering and optimization algorithm in smart grid[J]. Applied Energy, 2021, 299, 117178.
DOI |
14 | 张栋栋, 陈洁, 李洋. 基于VMD-SE和BiLSTM在短期负荷预测应用[J]. 现代电子技术, 2021, 44 (23): 155- 159. |
ZHANG Dongdong, CHEN Jie, LI Yang. Application of VMD-SE and BiLSTM in short-term load forecasting[J]. Modern Electronics Technique, 2021, 44 (23): 155- 159. | |
15 | 黄志祥, 周莉. 基于VMD-LSTM的短期电力负荷预测研究[J]. 洛阳理工学院学报(自然科学版), 2022, 32 (3): 76- 80, 96. |
HUANG Zhixiang, ZHOU Li. Research on short term load forecasting based on VMD-LSTM[J]. Journal of Luoyang Institute of Science and Technology (Natural Science Edition), 2022, 32 (3): 76- 80, 96. | |
16 |
VEERAMSETTY V, REDDY K R, SANTHOSH M, et al. Short-term electric power load forecasting using random forest and gated recurrent unit[J]. Electrical Engineering, 2022, 104 (1): 307- 329.
DOI |
17 | 张腾达, 李琦, 陈波. 基于LSTM的热力站短期热负荷预测研究[J]. 计算机仿真, 2022, 39 (9): 507- 512. |
ZHANG Tengda, LI Qi, CHEN Bo. Research on short-term heat load forecasting of thermal power station based on LSTM[J]. Computer Simulation, 2022, 39 (9): 507- 512. | |
18 |
SAJJAD M, AHMAD KHAN Z, ULLAH A, et al. A novel CNN-GRU-based hybrid approach for short-term residential load forecasting[J]. IEEE Access, 2020, 8, 143759- 143768.
DOI |
19 | 杨晶显, 张帅, 刘继春, 等. 基于VMD和双重注意力机制LSTM的短期光伏功率预测[J]. 电力系统自动化, 2021, 45 (3): 174- 182. |
YANG Jingxian, ZHANG Shuai, LIU Jichun, et al. Short-term photovoltaic power prediction based on variational mode decomposition and long shortterm memory with dual-stage attention mechanism[J]. Automation of Electric Power Systems, 2021, 45 (3): 174- 182. | |
20 | 徐晋宏, 魏秀业, 贺妍, 等. 基于CEEMDAN样本熵与PNN的行星齿轮故障诊断[J]. 机床与液压, 2021, 49 (20): 179- 183. |
XU Jinhong, WEI Xiuye, HE Yan, et al. Fault diagnosis of planetary gear based on CEEMDAN sample entropy and PNN[J]. Machine Tool & Hydraulics, 2021, 49 (20): 179- 183. | |
21 | TANG R N, LI X W, LI C, et al. Prediction of rubber leaf nitrogen content based on fractional-order GWO-SVR[C]//Proceedings of the 20th International Conference on Near Infrared Spectroscopy, August 9th 2022, Springer, Singapore, 2022: 303–315. |
22 | 董彦军, 王晓甜, 马红明, 等. 基于随机森林与长短期记忆网络的电力负荷预测方法[J]. 全球能源互联网, 2022, 5 (2): 147- 156. |
DONG Yanjun, WANG Xiaotian, MA Hongming, et al. Power load forecasting method based on random forest and long short-term memory[J]. Journal of Global Energy Interconnection, 2022, 5 (2): 147- 156. | |
23 |
ZHANG Y G, PAN G F. A hybrid prediction model for forecasting wind energy resources[J]. Environmental Science and Pollution Research, 2020, 27 (16): 19428- 19446.
DOI |
24 | 黄睿, 朱玲俐, 高峰, 等. 基于变分模态分解的卷积长短时记忆网络短期电力负荷预测方法[J/OL]. 现代电力: 1–10[2023-12-11]. https://doi.org/10.19725/j.cnki.1007-2322.2022.0210. |
HUANG Rui, ZHU Lingli, GAO Feng, et al. A convolutional long short term memory network short term power load prediction method based on variational mode decomposition [J/OL]. Modern Electric Power, 1–10 [2023-12-11]. https://doi.org/10.19725/j.cnki.1007-2322.2022.0210. | |
25 | 姚浩然, 李成鑫, 郑秀娟, 等. 集成自适应啁啾模态分解和Bi LSTM的短期负荷组合预测模型[J]. 电力系统保护与控制, 2022, 50 (19): 58- 66. |
YAO Haoran, LI Chengxin, ZHENG Xiujuan, et al. Short-term load combination forecasting model integrating ACMD and BiLSTM[J]. Power System Protection and Control, 2022, 50 (19): 58- 66. | |
26 |
杨信强, 李振华, 钟悦, 等. 基于变分模态分解和CNN-GRU-ED的超短期互感器误差预测[J]. 电力系统保护与控制, 2023, 51 (12): 68- 77.
DOI |
YANG Xinqiang, LI Zhenhua, ZHONG Yue, et al. Ultra-short term transformer error forecast based on variational mode decomposition and CNN-GRU-ED[J]. Power System Protection and Control, 2023, 51 (12): 68- 77.
DOI |
|
27 | 林希程. 基于组合预测模型电力负荷优化算法研究[J]. 电子技术与软件工程, 2023, (5): 110- 113. |
28 |
XIAN H F, CHE J X. Multi-space collaboration framework based optimal model selection for power load forecasting[J]. Applied Energy, 2022, 314, 118937.
DOI |
29 | AHMAD N, GHADI Y, ADNAN M, et al. Load forecasting techniques for power system: research challenges and survey[J]. IEEE Access, 1054, 10, 71054- 71090. |
30 | CUI C, HE M, DI F C, et al. Research on power load forecasting method based on LSTM model[C]//2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC). Chongqing, China. IEEE, 2020: 1657–1660. |
[1] | 王宇飞, 杜桐, 边伟国, 张钊, 刘慧婷, 杨丽君. 基于DTW K-medoids与VMD-多分支神经网络的多用户短期负荷预测[J]. 中国电力, 2024, 57(6): 121-130. |
[2] | 徐峰亮, 王克谦, 王文豪, 王鹏, 王文烨, 张帅, 赵凤展. 计及激励型需求响应的低压配电网混合储能优化配置[J]. 中国电力, 2024, 57(6): 90-101. |
[3] | 杨国华, 祁鑫, 贾睿, 刘一峰, 蒙飞, 马鑫, 邢潇文. 基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测[J]. 中国电力, 2024, 57(2): 55-61. |
[4] | 武鑫, 胡超, 王祺, 熊星宇, 胡亮, 钱相臣. 基于VMD的SOFC电堆密封失效泄漏故障诊断[J]. 中国电力, 2024, 57(12): 139-147. |
[5] | 陈庆斌, 杨耿煌, 耿丽清, 苏娟, 孙京生. 基于相似日选取和数据重构的短期光伏功率组合预测方法[J]. 中国电力, 2024, 57(12): 71-81. |
[6] | 郭洪武, 车建峰, 闫钇汛, 王丽婕. 基于无爬坡事件定义标准晴空集的短期光伏功率预测[J]. 中国电力, 2023, 56(9): 187-195. |
[7] | 赵隆, 温冠儒, 刘志成, 袁鹏, 董新胜. 基于参数优化的VMD-SVD和LSTM的输电杆塔倾斜状态识别[J]. 中国电力, 2023, 56(12): 217-226, 237. |
[8] | 李丰君, 王磊, 赵健, 张建宾, 张世尧, 田杨阳. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55(11): 149-154. |
[9] | 阮莹, 叶行汶, 邓明锋, 王星, 杨林禹, 舒勤. 基于自适应VMD和A-SVD的MOA在线监测方法[J]. 中国电力, 2021, 54(10): 177-185. |
[10] | 索春梅, 孙健, 张宗峰, 王贤宗. 基于灰色关联理论与经验模态分解的光伏出力超短期预测[J]. 中国电力, 2017, 50(12): 159-164. |
[11] | 马小敏, 高剑, 吴驰, 何锐, 龚奕宇, 李熠, 吴天宝. 基于灰色支持向量机的输电线路覆冰厚度预测模型[J]. 中国电力, 2016, 49(11): 46-50. |
[12] | 张娜, 王守相, 王亚旻. 基于掩模经验模态分解的风速组合预测模型[J]. 中国电力, 2014, 47(5): 129-135. |
[13] | 李元诚, 杨瑞仙. 用于短期风速预测的优化核心向量回归模型[J]. 中国电力, 2012, 45(3): 68-71. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||