[1] PELIKAN E, EBEN K, RESLER J, et al . Wind power forecasting by an empirical model using NWP outputs[C]//International Conference on Environment and Electrical Engineering. Prague, Czech Republic, 2010: 45-48. [2] 张学清,梁军. 风电功率时间序列混沌特性分析及预测模型研究[J]. 物理学报,2012,61(19):1-12. ZHANG Xue-qing, LIANG Jun. Chaotic characteristics analysis and prediction model study on wind power time series[J]. Acta Physica Sinica, 2012, 61(19): 1-12. [3] 冬雷,王丽婕,高爽,等. 基于混沌时间序列的大型风电场发电功率预测建模与研究[J]. 电工技术学报,2008,23(12):125-129. DONG Lei, WANG Li-jie, GAO Shuang, et al . Modeling and analysis of prediction of wind power generation in the large wind farm based on chaotic time series[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 125-129. [4] 范高锋,王伟胜,刘纯,等. 基于人工神经网络的风电功率预测[J]. 中国电机工程学报,2008,28(34):118-123. FAN Gao-feng, WANG Wei-sheng, LIU Chun, et al . Wind power prediction based on artificial neural network [J]. Proceedings of the CSEE, 2008, 28(34): 118-123. [5] LI G, SHI J. On comparing three artificial neural networks for wind speed forecasting[J]. Applied Energy, 2010, 87(7): 2313-2320. [6] 李俊芳,张步涵,谢光龙,等. 基于灰色模型的风速-风电功率预测研究[J]. 电力系统保护与控制,2010,38(19):151-159. LI Jun-fang, ZHANG Bu-han, XIE Guang-long, et al . Grey predictor models for wind speed-wind power prediction[J]. Power System Protection and Control, 2010, 38(19): 151-159. [7] EL-FOULY T H M, EL-SAADANY EF, SALAMA M M A. Grey predictor for wind energy conversion systems output power prediction [J]. IEEE Transactions on Power Systems, 2006, 21(3):1450-1452. [8] 杨锡运,孙宝君,张新房,等. 基于相似数据的支持向量机短期风速预测仿真研究[J]. 中国电机工程学报,2012,32(4):35-41. YANG Xi-yun, SUN Bao-jun, ZHANG Xin-fang, et al . Short-term wind speed forecasting based on support vector machine with similar Data [J]. Proceedings of the CSEE, 2012, 32(4): 35-41. [9] 罗文,王莉娜. 风场短期风速预测研究[J]. 电工技术学报,2011,26(7):68-74. LUO Wen, WANG Li-na. Short-term wind speed forecasting for wind farm[J]. Transactions of China Electrotechnical Society,2011, 26(7): 68-74. [10] 师洪涛,杨静玲,丁茂生,等. 基于小波—BP 神经网络的短期风电功率预测方法[J]. 电力系统自动化,2011,35(16):44-48. SHI Hong-tao, YANG Jing-ling, DING Mao-sheng, et al . A short- term wind power prediction method based on wavelet decomposition and BP neural network[J]. Automation of Electric Power Systems, 2011, 35(16): 44-48. [11] 彭春华,刘刚,孙惠娟. 基于小波分解和微分进化支持向量机的风电场风速预测[J]. 电力自动化设备,2012,32(1):9-13. PENG Chun-hua, LIU Gang, SUN Hui-juan. Wind speed forecasting based on wavelet decomposition and differential evolution-support vector machine for wind farms[J]. Electric Power Automation Equipment, 2012, 32(1): 9-13. [12] 叶林,刘鹏. 基于经验模态分解和支持向量机的短期风电功率组合预测模型[J]. 中国电机工程学报,2011,31(31):102-108. YE Lin, LIU Peng. Combined model based on EMD-SVM for short-term wind power prediction[J]. Proceedings of the CSEE, 2011, 31(31): 102-108. [13] HUANG N E, SHEN Z, LONG S R, et al . The empirical mode decomposition and the Hilbert spectrum for nonlinear and non- stationary time series analysis[J]. Proceedings of the Royal Society of London, Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. [14] 郭淑卿,梁建文,张郁山. 用HHT方法识别强迫振动下线性双自由度体系的模态参数[J]. 自然科学进展,2006,16(3):375-379. GUO Shu-qing, LIANG Jian-wen, ZHANG Yu-shan. Recognition of mode parameters of linear double freedom system under forced vibration[J]. Natural Science Development, 2006, 16(3): 375-379. [15] DEERING R, KAISER J F. The use of a masking signal to improve empirical mode decomposition[C]//IEEE International Conference on Acoustics, Speech, and Signal Processing.Philadelphia, Pennsylvania, USA, 2005: 485-488. [16] WU Z, HUANG N E, Ensemble empirical mode decomposition: A noise-assisted data analysis method [J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41. [17] TONG W, MINGCAI Z, QIHAO Y, et al . Comparing the applications of EMD and EEMD on time-frequency analysis of seismic signal [J]. Journal of Applied Geophysics, 2012, 83: 29-34. [18] PRINCE A, SENROY N, BALASUBRAMANIAN R. Targeted approach to apply masking signal-based empirical mode decomposition for mode identification from dynamic power system wide area measurement signal data[J]. IET Generation, Transmission & Distribution, 2011, 5(10): 1025-103. [19] MONTANA D J, DAVIS L. Training feed forward neural network using genetic algorithm[C]// Proc. of the 11th International Joint Conference on Artificial Intelligence. Detroit, MI, USA, 1989: 762-767. |