中国电力 ›› 2024, Vol. 57 ›› Issue (9): 156-168.DOI: 10.11930/j.issn.1004-9649.202401110

• 面向新型电力系统的城市电网关键技术 • 上一篇    下一篇

基于集合经验模态分解的增强核岭回归配电系统状态估计

张玉敏1(), 张涌琛1, 叶平峰3(), 吉兴全1, 石春友1, 蔡富东2, 李一宸1   

  1. 1. 山东科技大学 电气与自动化工程学院,山东 青岛 266590
    2. 山东信通电子股份有限公司,山东 淄博 255088
    3. 山东科技大学 储能技术学院,山东 青岛 266590
  • 收稿日期:2024-01-25 出版日期:2024-09-28 发布日期:2024-09-23
  • 作者简介:张玉敏(1986—),女,博士,副教授,从事电力系统运行与控制研究,E-mail:ymzhang2019@sdust.edu.cn
    叶平峰(1988—),男,通信作者,博士,讲师,从事电力系统优化调度和电压稳定分析研究,E-mail:ypfinput@163.com
  • 基金资助:
    山东省自然科学基金资助项目(ZR2023QE181,ZR2022ME219,ZR2021QE117);中国博士后面上资助项目(2023M734092)。

Enhanced Kernel Ridge Regression and Ensemble Empirical Mode Decomposition Based Distribution Network State Estimation

Yumin ZHANG1(), Yongchen ZHANG1, Pingfeng YE3(), Xingquan JI1, Chunyou SHI1, Fudong CAI2, Yichen LI1   

  1. 1. College of Electrical Engineering and Automation, Shandong University of Science and Technology, Qingdao 266590, China
    2. Shandong Senter Electronic Co., Ltd., Zibo 255088, China
    3. College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao 266590, China
  • Received:2024-01-25 Online:2024-09-28 Published:2024-09-23
  • Supported by:
    This work is supported by Shandong Province Natural Science Foundation (No.ZR2023QE181, ZR2022ME219, ZR2021QE117) and Chinese Postdoctoral Science Foundation (No.2023M734092).

摘要:

针对配电网量测信息存在强非高斯噪声时会大幅干扰基于深度学习的状态估计模型滤波精度的问题,提出了一种基于集合经验模态分解的增强核岭回归状态估计方法。首先,使用集合经验模态分解筛除量测信息中的多数噪声数据,保障了后续滤波对数据可靠性的要求。然后,通过构建增强核岭回归状态估计模型,建立了量测信息与估计残差之间的映射关系,输入量测信息后可以得到估计结果与估计残差。最后,在标准IEEE 33节点与某市78节点系统上进行数值仿真,结果证明了该方法在强非高斯噪声干扰下具有较高的精确性和鲁棒性。

关键词: 配电系统, 状态估计, 核岭回归, 非高斯噪声, 集合经验模态分解

Abstract:

Addressing the significant interference in the filtering accuracy of deep learning-based state estimation models caused by strong non-Gaussian noise in distribution network measurement information, an enhanced kernel ridge regression state estimation method based on ensemble empirical mode decomposition is proposed. Firstly, the ensemble empirical mode decomposition is utilized to filter out most of the noise data in the measurement information, ensuring the reliability of data for subsequent filtering. Subsequently, an enhanced kernel ridge regression state estimation model is constructed to establish a mapping relationship between measurement information and estimation residuals. By inputting the measurement information, the estimation results and estimation residuals can be obtained. Finally, numerical simulations are conducted on the standard IEEE 33-node system and a city-level 78-node system, demonstrating that the proposed method exhibits high accuracy and robustness under the interference of strong non-Gaussian noise.

Key words: distribution system, state estimation, kernel ridge regression, non-gaussian noise, ensemble empirical mode decomposition