中国电力 ›› 2024, Vol. 57 ›› Issue (2): 55-61.DOI: 10.11930/j.issn.1004-9649.202302098

• 新型电力系统低碳规划与运行 • 上一篇    下一篇

基于CEEMD-SE的CNN&LSTM-GRU短期风电功率预测

杨国华1(), 祁鑫2, 贾睿1, 刘一峰2, 蒙飞2, 马鑫1, 邢潇文1   

  1. 1. 宁夏大学 电子与电气工程学院,宁夏 银川 750021
    2. 国网宁夏电力有限公司调度控制中心,宁夏 银川 750001
  • 收稿日期:2023-02-27 出版日期:2024-02-28 发布日期:2024-02-28
  • 作者简介:杨国华(1972—),男,通信作者,教授,从事新能源电力系统及功率预测、系统调度运行研究,E-mail:ygh@nxu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(61763040)。

Short-Term Wind Power Forecast Based on CNN&LSTM-GRU Model Integrated with CEEMD-SE Algorithm

Guohua YANG1(), Xin QI2, Rui JIA1, Yifeng LIU2, Fei MENG2, Xin MA1, Xiaowen XING1   

  1. 1. School of Electronic and Electrical Engineering, Ningxia University, Yinchuan 750021, China
    2. Dispatching & Control Center of State Grid Ningxia Power Co., Ltd., Yinchuan 750001, China
  • Received:2023-02-27 Online:2024-02-28 Published:2024-02-28
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.61763040).

摘要:

为进一步提升短期风电功率的预测精度,提出了一种基于互补集合经验模态分解-样本熵(complementary ensemble empirical mode decomposition-sample entropy,CEEMD-SE)的卷积神经网络(convolutional neural network,CNN)和长短期记忆-门控循环单元(long short term memory-gated recurrent unit,LSTM-GRU)的短期风电功率预测模型。首先,利用互补集合经验模态分解将原始风电功率序列分解为若干本征模态函数(intrinsic mode function,IMF)分量和一个残差(residual,RES)分量,利用样本熵算法将相近的分量进行重构;其次,搭建卷积神经网络和长短期记忆网络的并行网络结构,提取数据的局部特征和时序特征,并将特征融合后输入门控循环单元网络中进行学习预测;最后,通过算例进行验证,结果表明采用该模型后预测精度得到了有效提升,其均方根误差降低了15.06%、平均绝对误差降低了15.22%、决定系数提高了1.91%。

关键词: 短期风电功率预测, 互补集合经验模态分解, 样本熵, 长短期记忆网络, 门控循环单元

Abstract:

In order to further improve the accuracy of short-term wind power forecast, a CNN & LSTM-GRU based short-term wind power prediction model using CEEMD-SE algorithm is proposed. First, the original wind power output series are decomposed into several intrinsic mode function components and one residual component by complementary set empirical mode decomposition, and those components of similar mode are reconstructed by sample entropy algorithm. Next, the parallel network structure of convolutional neural network and long short term memory network is set up, and the local and temporal features of the data are extracted. And then the features are fused and input into the gated cyclic unit network for learning and prediction. Finally, the feasibility of the model is verified through case studies. The results show that the forecast accuracy has been improved effectively. The root mean square error and average absolute error, of the proposed model are reduced by 15.06% and 15.22% respectively, while coefficient of determination is up by 1.91%.

Key words: short-term wind power forecasting, complementary ensemble empirical mode decomposition, sample entropy, long short term memory network, gated recurrent unite

中图分类号: