中国电力 ›› 2022, Vol. 55 ›› Issue (5): 47-56,110.DOI: 10.11930/j.issn.1004-9649.202104023

• 新能源 • 上一篇    下一篇

基于自适应权重的CNN-LSTM&GRU组合风电功率预测方法

贾睿1, 杨国华1,2, 郑豪丰1, 张鸿皓1, 柳萱1, 郁航1   

  1. 1. 宁夏大学 物理与电子电气工程学院,宁夏 银川 750021;
    2. 宁夏电力能源安全重点实验室,宁夏 银川 750004
  • 收稿日期:2021-04-25 修回日期:2022-02-25 出版日期:2022-05-28 发布日期:2022-05-18
  • 作者简介:贾睿(1997—),男,硕士研究生,从事电力系统风电功率预测技术研究,E-mail:3116044296@qq.com;杨国华(1972—),男,通信作者,教授,从事新能源电力系统自动化技术研究,E-mail:ygh@nxu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(71263043);宁夏回族自治区自然科学基金资助项目(2021AAC03062)

Combined Wind Power Prediction Method Based on CNN-LSTM&GRU with Adaptive Weights

JIA Rui1, YANG Guohua1,2, ZHENG Haofeng1, ZHANG Honghao1, LIU Xuan1, YU Hang1   

  1. 1. School of Physics and Electronic-Electrical Engineering, Ningxia University, Yinchuan 750021, China;
    2. Ningxia Key Laboratory of Electrical Energy Security, Yinchuan 750004, China
  • Received:2021-04-25 Revised:2022-02-25 Online:2022-05-28 Published:2022-05-18
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.71263043), Natural Science Foundation of Ningxia Hui Autonomous Region (No.2021AAC03062).

摘要: 准确预测风电功率可以提高电网运行的安全性和可靠性。为进一步提高短期风电功率预测精度,针对目前单一模型难以获得最优预测结果的问题,提出一种CNN-LSTM&GRU多模型组合短期风电功率预测方法。首先,利用卷积神经网络(convolutional neural network,CNN)提取数据局部特征,并结合长短期记忆(long short term memory,LSTM)网络构造出融合局部特征预提取模块的CNN-LSTM网络结构;然后,将其与门控循环单元(gated recurrent unit,GRU)网络并行,并通过自适应权重学习模块为CNN-LSTM模块和GRU模块的输出选择最佳权重,构建出CNN-LSTM&GRU组合的短期预测模型。最后,对中国西北某风电场的出力进行预测研究,结果表明:所提模型与单一模型或其他组合模型相比,指标误差更小,预测精度更高。

关键词: 短期风电功率预测, CNN-LSTM, GRU, 组合预测, 自适应权重学习

Abstract: Accurate wind power prediction can improve the safety and reliability of grid operation. To further enhance the accuracy of short-term wind power prediction, this paper proposes a CNN-LSTM&GRU multi-model combined prediction method considering the difficulty in obtaining optimal prediction results with a single model. Firstly, a convolutional neural network (CNN) is used to extract local features of data and combined with a long short-term memory (LSTM) network to construct a CNN-LSTM network structure that incorporates local feature pre-extraction modules. Then, the CNN-LSTM network is paralleled with a gated recurrent unit (GRU) network. An adaptive weight learning module is employed to select the best weights for the outputs of the CNN-LSTM module and the GRU module. In this way, the paper constructs a combined short-term prediction model based on CNN-LSTM&GRU. Finally, the model is applied to the power prediction of a wind farm in northwestern China. The experimental results show that the proposed model has a smaller mean absolute error (MAE), a smaller root mean square error (RMSE), and higher prediction accuracy than single models and other combined models.

Key words: short-term wind power prediction, CNN-LSTM, GRU, combined prediction, adaptive weight learning