[1] 王恰. 2020—2060年中国风电装机规模及其CO2减排预测[J]. 生态经济, 2021, 37(7): 13–21 WANG Qia. Forecast of China's wind power installed capacity and corresponding CO2 reduction from 2020 to 2060[J]. Ecological Economy, 2021, 37(7): 13–21 [2] 黄鹏翔, 周云海, 徐飞, 等. 基于灵活性裕度的含风电电力系统源荷储协调滚动调度[J]. 中国电力, 2020, 53(11): 78–88 HUANG Pengxiang, ZHOU Yunhai, XU Fei, et al. Source-load-storage coordinated rolling dispatch for wind power integrated power system based on flexibility margin[J]. Electric Power, 2020, 53(11): 78–88 [3] HAGHI H V, LOTFIFARD S, QU Z H. Multivariate predictive analytics of wind power data for robust control of energy storage[J]. IEEE Transactions on Industrial Informatics, 2016, 12(4): 1350–1360. [4] WANG Y, ZHANG N, KANG C Q, et al. An efficient approach to power system uncertainty analysis with high-dimensional dependencies[J]. IEEE Transactions on Power Systems, 2018, 33(3): 2984–2994. [5] YANG M, CHEN X X, DU J, et al. Ultra-short-term multi-step wind power prediction based on improved EMD and reconstruction method using Run-length analysis[J]. IEEE Access, 2018, 6: 31908–31917. [6] 杨茂, 黄宾阳, 江博. 基于概率分布量化指标和灰色关联决策的风电功率实时预测研究[J]. 中国电机工程学报, 2017, 37(24): 7099–7107,7424 YANG Mao, HUANG Binyang, JIANG Bo. Real-time wind power prediction based on probability distribution and gray relational decision-making[J]. Proceedings of the CSEE, 2017, 37(24): 7099–7107,7424 [7] 陈昊, 张建忠, 许超, 等. 基于多重离群点平滑转换自回归模型的短期风电功率预测[J]. 电力系统保护与控制, 2019, 47(1): 73–79 CHEN Hao, ZHANG Jianzhong, XU Chao, et al. Short-term wind power forecast based on MOSTAR model[J]. Power System Protection and Control, 2019, 47(1): 73–79 [8] 崔明建, 孙元章, 柯德平. 基于原子稀疏分解和BP神经网络的风电功率爬坡事件预测[J]. 电力系统自动化, 2014, 38(12): 6–11,26 CUI Mingjian, SUN Yuanzhang, KE Deping. Wind power ramp events forecasting based on atomic sparse decomposition and BP neural networks[J]. Automation of Electric Power Systems, 2014, 38(12): 6–11,26 [9] ZENDEHBOUDI A, BASEER M A, SAIDUR R. Application of support vector machine models for forecasting solar and wind energy resources: a review[J]. Journal of Cleaner Production, 2018, 199: 272–285. [10] 赵睿智, 丁云飞. 基于MEEMD-KELM的短期风电功率预测[J]. 电测与仪表, 2020, 57(21): 92–98 ZHAO Ruizhi, DING Yunfei. Short-term prediction of wind power based on MEEMD-KELM[J]. Electrical Measurement & Instrumentation, 2020, 57(21): 92–98 [11] KISVARI A, LIN Z, LIU X L. Wind power forecasting - A data-driven method along with gated recurrent neural network[J]. Renewable Energy, 2021, 163: 1895–1909. [12] 李俊卿, 李秋佳. 基于Kriging和长短期记忆网络的风电功率预测方法[J]. 太阳能学报, 2020, 41(11): 241–247 LI Junqing, LI Qiujia. Wind power prediction method based on Kriging and LSTM network[J]. Acta Energiae Solaris Sinica, 2020, 41(11): 241–247 [13] HE Y Y, WANG Y. Short-term wind power prediction based on EEMD-LASSO-QRNN model[J]. Applied Soft Computing, 2021, 105: 107288. [14] 王依宁, 解大, 王西田, 等. 基于PCA-LSTM模型的风电机网相互作用预测[J]. 中国电机工程学报, 2019, 39(14): 4070–4081 WANG Yining, XIE Da, WANG Xitian, et al. Prediction of interaction between grid and wind farms based on PCA-LSTM model[J]. Proceedings of the CSEE, 2019, 39(14): 4070–4081 [15] 曹有为, 闫双红, 刘海涛, 等. 基于降噪时序深度学习网络的风电功率短期预测方法[J]. 电力系统及其自动化学报, 2020, 32(1): 145–150 CAO Youwei, YAN Shuanghong, LIU Haitao, et al. Short-term wind power forecasting method based on noise-reduction time-series deep learning network[J]. Proceedings of the CSU-EPSA, 2020, 32(1): 145–150 [16] 庄家懿, 杨国华, 郑豪丰, 等. 基于多模型融合的CNN-LSTM-XGBoost短期电力负荷预测方法[J]. 中国电力, 2021, 54(5): 46–55 ZHUANG Jiayi, YANG Guohua, ZHENG Haofeng, et al. Short-term load forecasting method based on multi-model fusion using CNN-LSTM-XGBoost[J]. Electric Power, 2021, 54(5): 46–55 [17] 牛哲文, 余泽远, 李波, 等. 基于深度门控循环单元神经网络的短期风功率预测模型[J]. 电力自动化设备, 2018, 38(5): 36–42 NIU Zhewen, YU Zeyuan, LI Bo, et al. Short-term wind power forecasting model based on deep gated recurrent unit neural network[J]. Electric Power Automation Equipment, 2018, 38(5): 36–42 [18] R?DL S, MARSCHITZ I, MACHE C J, et al. One-year safe use of the Prismaflex HF20^? disposable set in infants in 220 renal replacement treatment sessions[J]. Intensive Care Medicine, 2011, 37(5): 884–885. [19] 滕伟, 黄乙珂, 吴仕明, 等. 基于XGBoost与LSTM的风力发电机绕组温度预测[J]. 中国电力, 2021, 54(6): 95–103 TENG Wei, HUANG Yike, WU Shiming, et al. Wind turbine generator winding temperature prediction based on XGBoost and LSTM[J]. Electric Power, 2021, 54(6): 95–103 [20] 王增平, 赵兵, 纪维佳, 等. 基于GRU-NN模型的短期负荷预测方法[J]. 电力系统自动化, 2019, 43(5): 53–58 WANG Zengping, ZHAO Bing, JI Weijia, et al. Short-term load forecasting method based on GRU-NN model[J]. Automation of Electric Power Systems, 2019, 43(5): 53–58 [21] 张沛. 基于神经网络的风电功率短期与超短期预测[D]. 济南: 山东大学, 2020. ZHANG Pei. Short-term and ultra-short-term forecasting of wind power based on neural network[D]. Jinan: Shandong University, 2020. [22] 刘芳. 基于改进BP神经网络的风电功率预测方法研究[D]. 杭州: 浙江大学, 2020. LIU Fang. Wind power forecasting based on improved BP neural network[D]. Hangzhou: Zhejiang University, 2020. [23] 朱乔木, 李弘毅, 王子琪, 等. 基于长短期记忆网络的风电场发电功率超短期预测[J]. 电网技术, 2017, 41(12): 3797–3802 ZHU Qiaomu, LI Hongyi, WANG Ziqi, et al. Short-term wind power forecasting based on LSTM[J]. Power System Technology, 2017, 41(12): 3797–3802 [24] 马嘉翼. 基于动态规律建模的风电功率预测方法研究[D]. 济南: 山东大学, 2019. MA Jiayi. Research of wind power forecast based on empirical dynamic modeling[D]. Jinan: Shandong University, 2019. [25] LI L L, CEN Z Y, TSENG M L, et al. Improving short-term wind power prediction using hybrid improved cuckoo search arithmetic - Support vector regression machine[J]. Journal of Cleaner Production, 2021, 279: 123739. [26] 刘兴, 王艳, 纪志成. 基于随机森林的风电功率短期预测方法[J]. 系统仿真学报, 2021, 33(11): 2606–2614 LIU Xing, WANG Yan, JI Zhicheng. Short-term wind power prediction method based on random forest[J]. Journal of System Simulation, 2021, 33(11): 2606–2614
|