中国电力 ›› 2024, Vol. 57 ›› Issue (12): 71-81.DOI: 10.11930/j.issn.1004-9649.202406005

• 面向新型电力系统的源荷预测技术 • 上一篇    下一篇

基于相似日选取和数据重构的短期光伏功率组合预测方法

陈庆斌1(), 杨耿煌1,2(), 耿丽清1,2, 苏娟3, 孙京生4   

  1. 1. 天津职业技术师范大学 自动化与电气工程学院,天津 300222
    2. 天津市信息传感与智能控制重点实验室,天津 300222
    3. 中国农业大学 信息与电气工程学院,北京 100083
    4. 国网天津市电力公司综合服务中心,天津 300010
  • 收稿日期:2024-06-02 出版日期:2024-12-28 发布日期:2024-12-27
  • 作者简介:陈庆斌(2000—),男,硕士研究生,从事新能源功率预测、综合能源系统研究,E-mail:c1185955913@163.com
    杨耿煌(1978—),男,通信作者,博士,教授,从事智能信息处理、电力系统研究,E-mail:ygh@tute.edu.cn
  • 基金资助:
    国家重点研发计划资助项目(基于数值天气预测高频更新的风电/光伏日内功率及供电保障能力预测技术,2022YFB2403002)。

Short Term Photovoltaic Power Combination Prediction Method Based on Similar Day Selection and Data Reconstruction

Qingbin CHEN1(), Genghuang YANG1,2(), Liqing GENG1,2, Juan SU3, Jingsheng SUN4   

  1. 1. School of Automation and Electrical Engineering, Tianjin University of Technology and Education, Tianjin 300222, China
    2. Tianjin Key Laboratory of Information Sensing and Intelligent Control, Tianjin 300222, China
    3. College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, China
    4. State Grid Tianjin Electric Power Company Comprehensive Service Center, Tianjin 300010, China
  • Received:2024-06-02 Online:2024-12-28 Published:2024-12-27
  • Supported by:
    This work is supported by National Key Research and Development Program of China (Wind/Photovoltaic Intraday Power and Power Supply Guarantee Capability Prediction Technology Based on High-Frequency Updates of Numerical Weather Prediction, No.2022YFB2403002).

摘要:

针对光伏功率随机性较强等问题,提出了一种基于相似日选取和数据重构的短期光伏功率组合预测方法。首先,利用核模糊C均值算法对光伏功率进行聚类分析,通过最大信息系数提取主要影响特征;其次,结合合作博弈思想计算预测日和历史日的综合相关系数,挑选相关性较强的历史日构建训练集;然后,利用变分模态分解将光伏功率分解为若干子序列,计算排列熵值并重构为趋势项、低频项和高频项;最后,对趋势项和低频项采用长短期记忆神经网络进行预测,对高频项采用卷积神经网络-双向长短期记忆神经网络-注意力机制模型进行预测,将结果叠加得到最终预测结果。经实例验证,在不同天气条件下,所提模型整体预测误差最小,可有效提高预测精度。

关键词: 光伏功率, 相似日, 变分模态分解, 双向长短期记忆神经网络, 组合预测

Abstract:

A short-term photovoltaic power combination prediction method based on similar day selection and data reconstruction is proposed to address the strong randomness of photovoltaic power. Firstly, clustering analysis of photovoltaic power is performed using the kernel fuzzy C-means algorithm, and the main influencing features are extracted through the maximum information coefficient. Secondly, the cooperative game theory is used to calculate the comprehensive correlation coefficient between the predicted days and the historical days, and the historical days with strong correlation are selected to construct the training set. Then, the variational mode decomposition method is used to decompose the photovoltaic power into several subsequences, and the permutation entropy is calculated and reconstructed into trend, low-frequency, and high-frequency terms. Finally, the long short-term memory neural networks are used to predict the trend and low-frequency items, while the convolutional neural network-bidirectional long short-term memory-attention models are used to predict the high-frequency items. The final prediction result is obtained by overlaying the results. Through practical examples, it has been verified that under different weather conditions, the overall prediction error of the model is the smallest, which can effectively improve the prediction accuracy.

Key words: photovoltaic power, similar days, variational mode decomposition, bidirectional long short term memory neural network, combination prediction