中国电力 ›› 2024, Vol. 57 ›› Issue (3): 144-151.DOI: 10.11930/j.issn.1004-9649.202305029
收稿日期:
2023-05-08
出版日期:
2024-03-28
发布日期:
2024-03-26
作者简介:
战文华(1985—),男,高级工程师,从事电网调度运行工作,E-mail:949637@qq.com基金资助:
Wenhua ZHAN1(), Jianfeng CHE2(
), Bo WANG2, Yu DING2
Received:
2023-05-08
Online:
2024-03-28
Published:
2024-03-26
Supported by:
摘要:
区域光伏的短期功率预测是省级及以上电网调控中心制定发电计划、提高光伏消纳率的重要基础之一。光伏短期功率预测本质上是构建数值天气预报与实际功率之间的映射模型,为了实现预测精度的提升,利用网格化的数值天气预报,采用残差网络建立区域光伏的多输出预测模型,充分挖掘区域光伏所属空间的气象资源分布与各光伏电站功率的关联关系,实现以网格化数值天气预报为输入的区域各光伏电站的功率预测。以实际运行数据进行仿真,结果表明,本文方法在各光伏电站的功率和总功率2个方面的预测结果均优于现有成熟方法。
战文华, 车建峰, 王勃, 丁禹. 基于网格化数值天气预报的区域光伏发电多输出功率预测方法[J]. 中国电力, 2024, 57(3): 144-151.
Wenhua ZHAN, Jianfeng CHE, Bo WANG, Yu DING. A Grid-based Numerical Weather Prediction Method for Multi-output Prediction of Regional Photovoltaic Power[J]. Electric Power, 2024, 57(3): 144-151.
算法 | Emae /% | Ermse /% | r | |||
BPNN | 5.87 | 8.25 | 0.958 | |||
XGBoost | 6.60 | 8.97 | 0.952 | |||
本文方法 | 5.74 | 8.00 | 0.960 |
表 1 不同方法对46座光伏电站总功率的预测性能
Table 1 Performance of different methods for total power prediction of 46 PV stations
算法 | Emae /% | Ermse /% | r | |||
BPNN | 5.87 | 8.25 | 0.958 | |||
XGBoost | 6.60 | 8.97 | 0.952 | |||
本文方法 | 5.74 | 8.00 | 0.960 |
1 | 国家能源局. 国家能源局2023年一季度新闻发布会文字实录[EB/OL]. (2023-02-13)[2023-04-17]. https://www.nea.gov.cn/2023-02/13/C.1310697149.htm. |
2 | 薛飞, 李旭涛, 李宏强, 等. 基于双侧电压反馈控制策略的并网光伏系统电压稳定性研究[J]. 中国电力, 2022, 55 (9): 183- 191, 203. |
XUE Fei, LI Xutao, LI Hongqiang, et al. Research on voltage stability of grid-connected photovoltaic system based on double-side voltage feedback control[J]. Electric Power, 2022, 55 (9): 183- 191, 203. | |
3 | 张娜, 任强, 刘广忱, 等. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55 (5): 57- 65. |
ZHANG Na, REN Qiang, LIU Guangchen, et al. PV power short-term forecasting method based on VMD-GWO-ELMAN[J]. Electric Power, 2022, 55 (5): 57- 65. | |
4 | 李一, 杨茂, 苏欣. 基于集成聚类及改进马尔科夫链模型的光伏功率短期预测[J]. 南方电网技术, 2023, 17 (10): 113- 122. |
LI Yi, YANG Mao, SU Xin. Short-term prediction of photovoltaic power based on integrated clustering and improved markov chain model[J]. Southern Power System Technology, 2023, 17 (10): 113- 122. | |
5 | 冯双磊. 新能源发电功率预测技术[R]. 北京: 中国电机工程学会, 2018. |
6 | 卢静, 翟海清, 冯双磊, 等. 光伏发电功率预测方法的探索[J]. 华东电力, 2013, 41 (2): 380- 384. |
LU Jing, ZHAI Haiqing, FENG Shuanglei, et al. Physical method for photovoltaic power prediction[J]. East China Electric Power, 2013, 41 (2): 380- 384. | |
7 |
叶林, 陈政, 赵永宁, 等. 基于遗传算法—模糊径向基神经网络的光伏发电功率预测模型[J]. 电力系统自动化, 2015, 39 (16): 16- 22.
DOI |
YE Lin, CHEN Zheng, ZHAO Yongning, et al. Photovoltaic power forecasting model based on genetic algorithm and fuzzy radial basis function neural network[J]. Automation of Electric Power Systems, 2015, 39 (16): 16- 22.
DOI |
|
8 | 谭海旺, 杨启亮, 邢建春, 等. 基于XGBoost-LSTM组合模型的光伏发电功率预测[J]. 太阳能学报, 2022, 43 (8): 75- 81. |
TAN Haiwang, YANG Qiliang, XING Jianchun, et al. Photovoltaic power prediction based on combined xgboost-lstm model[J]. Acta Energiae Solaris Sinica, 2022, 43 (8): 75- 81. | |
9 | 葛浩然, 夏宇, 邹文进, 等. 基于RF-XGBoost的光伏发电功率预测[J]. 电气自动化, 2022, 44 (5): 12- 15. |
GE Haoran, XIA Yu, ZOU Wenjin, et al. Prediction of photovoltaic power generation based on RF-XGBoost[J]. Electrical Automation, 2022, 44 (5): 12- 15. | |
10 | 吴春华, 董阿龙, 李智华, 等. 基于图相似日和PSO-XGBoost的光伏功率预测[J]. 高电压技术, 2022, 48 (8): 3250- 3259. |
WU Chunhua, DONG Along, LI Zhihua, et al. Photovoltaic power prediction based on graph similarity day and PSO-XGBoost[J]. High Voltage Engineering, 2022, 48 (8): 3250- 3259. | |
11 |
YE R, DAI Q. MultiTL-KELM: a multi-task learning algorithm for multi-step-ahead time series prediction[J]. Applied Soft Computing, 2019, 79, 227- 253.
DOI |
12 | 吉锌格, 李慧, 叶林, 等. 基于波动特性挖掘的短期光伏功率预测[J]. 太阳能学报, 2022, 43 (5): 146- 155. |
JI Xinge, LI Hui, YE Lin, et al. Short-term photovoltaic power forecasting based on fluctuation characteristics mining[J]. Acta Energiae Solaris Sinica, 2022, 43 (5): 146- 155. | |
13 | 张青山, 王丽婕, 郝颖, 等. 基于卫星云图和晴空模型的分布式光伏电站太阳辐照度超短期预测[J]. 高电压技术, 2022, 48 (8): 3271- 3281. |
ZHANG Qingshan, WANG Lijie, HAO Ying, et al. Ultra-short-term solar irradiance prediction of distributed photovoltaic power stations based on satellite cloud images and clear sky model[J]. High Voltage Engineering, 2022, 48 (8): 3271- 3281. | |
14 |
王彪, 吕洋, 陈中, 等. 考虑信息时移的分布式光伏机理-数据混合驱动短期功率预测[J]. 电力系统自动化, 2022, 46 (11): 67- 74.
DOI |
WANG Biao, LYU Yang, CHEN Zhong, et al. Hybrid mechanism-data-driven short-term power forecasting of distributed photovoltaic considering information time shift[J]. Automation of Electric Power Systems, 2022, 46 (11): 67- 74.
DOI |
|
15 | 郑若楠, 李国杰, 韩蓓, 等. 基于加权扩展日特征矩阵的分布式光伏发电日前功率预测[J]. 电力自动化设备, 2022, 42 (2): 99- 105. |
ZHENG Ruonan, LI Guojie, HAN Bei, et al. Day-ahead power forecasting of distributed photovoltaic generation based on weighted expanded daily feature matrix[J]. Electric Power Automation Equipment, 2022, 42 (2): 99- 105. | |
16 | 乔颖, 孙荣富, 丁然, 等. 基于数据增强的分布式光伏电站群短期功率预测(二): 网格化预测[J]. 电网技术, 2021, 45 (6): 2210- 2218. |
QIAO Ying, SUN Rongfu, DING Ran, et al. Distributed photovoltaic station cluster short-term power forecasting part II: gridding prediction[J]. Power System Technology, 2021, 45 (6): 2210- 2218. | |
17 | 焦田利. 基于时空关系的广域分布式光伏发电群出力预测关键模型研究[D]. 杭州: 杭州电子科技大学, 2019. |
JIAO Tianli. Study on key models of wide area distributed photovoltaic power generation output prediction based on spatial-temporal relationship[D]. Hangzhou: Hangzhou Dianzi University, 2019. | |
18 |
ALMONACID-OLLEROS G, ALMONACID G, GIL D, et al. Evaluation of transfer learning and fine-tuning to nowcast energy generation of photovoltaic systems in different climates[J]. Sustainability, 2022, 14 (5): 3092.
DOI |
19 |
MIRAFTABZADEH S M, LONGO M. High-resolution PV power prediction model based on the deep learning and attention mechanism[J]. Sustainable Energy, Grids and Networks, 2023, 34, 101025.
DOI |
20 |
LUO X, ZHANG D X, ZHU X. Combining transfer learning and constrained long short-term memory for power generation forecasting of newly-constructed photovoltaic plants[J]. Renewable Energy, 2022, 185, 1062- 1077.
DOI |
21 | 杜仲耀, 陈晓英, 邓宇, 等. 基于特征迁移的光伏功率短期预测[J]. 电源技术, 2022, 46 (3): 315- 319. |
DU Zhongyao, CHEN Xiaoying, DENG Yu, et al. Short term prediction of photovoltaic power based on feature transfer[J]. Chinese Journal of Power Sources, 2022, 46 (3): 315- 319. | |
22 | 张童彦, 廖清芬, 唐飞, 等. 基于气象资源插值与迁移学习的广域分布式光伏功率预测方法[J]. 中国电机工程学报, 2023, 43 (20): 7929- 7940. |
ZHANG Tongyan, LIAO Qingfen, TANG Fei, et al. Wide-area distributed photovoltaic power forecast method based on meteorological resource interpolation and transfer learning[J]. Proceedings of the CSEE, 2023, 43 (20): 7929- 7940. | |
23 | 卢俊杰, 蔡涛, 郎建勋, 等. 基于集群划分的光伏电站集群发电功率短期预测方法[J]. 高电压技术, 2022, 48 (5): 1943- 1951. |
LU Junjie, CAI Tao, LANG Jianxun, et al. Short-term power output forecasting of clustered photovoltaic solar plants based on cluster partition[J]. High Voltage Engineering, 2022, 48 (5): 1943- 1951. | |
24 | 崔杨, 陈正洪, 许沛华. 基于机器学习的集群式风光一体短期功率预测技术[J]. 中国电力, 2020, 53 (3): 1- 7. |
CUI Yang, CHEN Zhenghong, XU Peihua. Short-term power prediction for wind farm and solar plant clusters based on machine learning method[J]. Electric Power, 2020, 53 (3): 1- 7. | |
25 | 邱锡鹏. 神经网络与深度学习[M]. 北京: 机械工业出版社, 2020. |
26 | CHEN T Q, GUESTRIN C. XGBoost: a scalable tree boosting system[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, USA. ACM, 2016: 785–794. |
[1] | 李翰章, 冯江涛, 王鹏程, 荣澔洁, 柴宇唤. 基于TDE-SO-AWM-GRU的光伏发电功率预测模型[J]. 中国电力, 2024, 57(12): 41-49. |
[2] | 陆友文, 崔昊, 陈佳宁, 彭祥佳, 冯双, 刘栋. 基于RA-CNN和同步相量的风电场次/超同步振荡参数智能辨识方法[J]. 中国电力, 2023, 56(4): 46-55,67. |
[3] | 张娜, 任强, 刘广忱, 郭力萍, 李静宇. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55(5): 57-65. |
[4] | 周艳真, 查显煜, 兰健, 郭庆来, 孙宏斌, 薛峰, 王胜明. 基于数据增强和深度残差网络的电力系统暂态稳定预测[J]. 中国电力, 2020, 53(1): 22-31. |
[5] | 梁适春, 张晓冬, 林培峰, 牛萌. 一种混合储能光伏发电系统的功率预测算法[J]. 中国电力, 2014, 47(3): 24-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||