中国电力 ›› 2024, Vol. 57 ›› Issue (12): 41-49.DOI: 10.11930/j.issn.1004-9649.202401015
李翰章1(), 冯江涛1(
), 王鹏程2, 荣澔洁3, 柴宇唤1
收稿日期:
2024-01-03
出版日期:
2024-12-28
发布日期:
2024-12-27
作者简介:
李翰章(1997—),男,硕士研究生,从事深度学习与新能源智能优化调度研究,E-mail:mycroft0928@163.com基金资助:
Hanzhang LI1(), Jiangtao FENG1(
), Pengcheng WANG2, Haojie RONG3, Yuhuan CHAI1
Received:
2024-01-03
Online:
2024-12-28
Published:
2024-12-27
Supported by:
摘要:
精确预测光伏发电功率对电网的安全与经济运行具有重要的意义,但因光伏发电具有时序性、间歇性、波动性以及高非线性等特征,难以深度挖掘数据隐含信息。针对此类问题,提出了一种基于结合时变数据增强(time-varying data enhancement,TDE)、蛇优化算法(snake optimizer,SO)、自适应权重模块(adaptive weight module,AWM)和门控循环单元(gated-recurrent unit,GRU)的光伏发电功率预测模型,通过强相关TDE提升数据特征的表现力,并构造全新的输入矩阵,然后利用AWM对增强后的输入矩阵进行自动赋权处理进入GRU进行预测,同时考虑到组合模型超参数选择困难的问题,引入SO对模型的最佳阈值进行寻找以发挥模型最大性能。最后,使用某光伏发电站实际数据对模型进行验证,结果表明:所提模型可有效提升光伏发电功率的预测精度。
李翰章, 冯江涛, 王鹏程, 荣澔洁, 柴宇唤. 基于TDE-SO-AWM-GRU的光伏发电功率预测模型[J]. 中国电力, 2024, 57(12): 41-49.
Hanzhang LI, Jiangtao FENG, Pengcheng WANG, Haojie RONG, Yuhuan CHAI. Photovoltaic Power Prediction Model Based on TDE-SO-AWM-GRU[J]. Electric Power, 2024, 57(12): 41-49.
幅度 | 辐照度幅值变化/ (W·m–2·(15 min)–1) | 湿度幅值变化/ (%·(15 min)–1) | 温度幅值变化/ (℃·(15 min)–1) | |||
低幅 | [0, 80) | [0, 0.8) | [0, 0.3) | |||
中幅 | [80, 250) | [0.8, 2.5) | [0.3, 0.8) | |||
高幅 | [250, 500) | [2.5, 4) | [0.8, 1.4) | |||
剧幅 | ≥500 | ≥4 | ≥1.4 |
表 1 各气象因素幅值变化划分标准
Table 1 Classification criteria for change of amplitude of each meteorological factor
幅度 | 辐照度幅值变化/ (W·m–2·(15 min)–1) | 湿度幅值变化/ (%·(15 min)–1) | 温度幅值变化/ (℃·(15 min)–1) | |||
低幅 | [0, 80) | [0, 0.8) | [0, 0.3) | |||
中幅 | [80, 250) | [0.8, 2.5) | [0.3, 0.8) | |||
高幅 | [250, 500) | [2.5, 4) | [0.8, 1.4) | |||
剧幅 | ≥500 | ≥4 | ≥1.4 |
模型类型 | EMA/MW | ERMS/MW | ||
LSTM | ||||
GRU | ||||
TDE-LSTM | ||||
TDE-GRU | ||||
CNN-GRU | ||||
Attention-GRU | ||||
TDE-SO-AWM-LSTM | ||||
TDE-SO-AWM-GRU |
表 2 稳定型天气实验结果对比
Table 2 Comparison of results from stable weather experiments
模型类型 | EMA/MW | ERMS/MW | ||
LSTM | ||||
GRU | ||||
TDE-LSTM | ||||
TDE-GRU | ||||
CNN-GRU | ||||
Attention-GRU | ||||
TDE-SO-AWM-LSTM | ||||
TDE-SO-AWM-GRU |
模型类型 | EMA/MW | ERMS/MW | ||
LSTM | ||||
GRU | ||||
TDE-LSTM | ||||
TDE-GRU | ||||
CNN-GRU | ||||
Attention-GRU | ||||
TDE-SO-AWM-LSTM | ||||
TDE-SO-AWM-GRU |
表 3 突变型天气实验结果对比
Table 3 Comparison of results from mutant weather experiments
模型类型 | EMA/MW | ERMS/MW | ||
LSTM | ||||
GRU | ||||
TDE-LSTM | ||||
TDE-GRU | ||||
CNN-GRU | ||||
Attention-GRU | ||||
TDE-SO-AWM-LSTM | ||||
TDE-SO-AWM-GRU |
1 | 程启明, 徐聪, 程尹曼, 等. 基于混合储能技术的光储式充电站直流微网系统协调控制[J]. 高电压技术, 2016, 42 (7): 2073- 2083. |
CHENG Qiming, XU Cong, CHENG Yinman, et al. Coordination control of PV charging station DC microgrid system based on hybrid energy storage technology[J]. High Voltage Engineering, 2016, 42 (7): 2073- 2083. | |
2 | 时珊珊, 魏新迟, 张宇, 等. 考虑多模式融合的光储充电站储能系统优化运行策略[J]. 中国电力, 2023, 56 (3): 144- 153, 161. |
SHI Shanshan, WEI Xinchi, ZHANG Yu, et al. Optimal operation strategy of energy storage system in photovoltaic-storage charging station considering multi-mode integration[J]. Electric Power, 2023, 56 (3): 144- 153, 161. | |
3 | 马覃峰, 安甦, 刘明顺, 等. 光储系统电网侧故障下VSC变流器的跟网-构网型控制方法[J]. 广东电力, 2023, 36 (12): 47- 56. |
MA Qinfeng, AN Su, LIU Mingshun, et al. Control methods of VSC converters for frid-following/forming operation under grid-side faults in PV energy storage systems[J]. Guangdong Electric Power, 2023, 36 (12): 47- 56. | |
4 | 郭洪武, 车建峰, 闫钇汛, 等. 基于无爬坡事件定义标准晴空集的短期光伏功率预测[J]. 中国电力, 2023, 56 (9): 187- 195. |
GUO Hongwu, CHE Jianfeng , YAN Yixun, et al. Short-term photovoltaic power prediction based on standard clear sky set defined by no climbing event[J]. Electric Power, 2023, 56 (9): 187- 195. | |
5 | 刘晓艳, 王珏, 姚铁锤, 等. 基于卫星遥感的超短期分布式光伏功率预测[J]. 电工技术学报, 2022, 37 (7): 1800- 1809. |
LIU Xiaoyan, WANG Jue, YAO Tiechui, et al. Ultra short-term distributed photovoltaic power prediction based on satellite remote sensing[J]. Transactions of China Electrotechnical Society, 2022, 37 (7): 1800- 1809. | |
6 | 钱振, 蔡世波, 顾宇庆, 等. 光伏发电功率预测方法研究综述[J]. 机电工程, 2015, 32 (5): 651- 659. |
QIAN Zhen, CAI Shibo, GU Yuqing, et al. Review of PV power generation prediction[J]. Journal of Mechanical & Electrical Engineering, 2015, 32 (5): 651- 659. | |
7 |
陈炜, 艾欣, 吴涛, 等. 光伏并网发电系统对电网的影响研究综述[J]. 电力自动化设备, 2013, 33 (2): 26- 32, 39.
DOI |
CHEN Wei, AI Xin, WU Tao, et al. Influence of grid-connected photovoltaic system on power network[J]. Electric Power Automation Equipment, 2013, 33 (2): 26- 32, 39.
DOI |
|
8 | 邱建, 张建新, 朱煜昆, 等. 光伏并网稳定控制系统设计方法及其在南方电网的应用与实践[J]. 南方电网技术, 2024, 18 (7): 139- 147. |
QIU Jian, ZHANG Jianxin, ZHUN Yikun, et al. Design method of stability control system for photovoltaic grid-connected station and its application and practice in CSG[J]. Southern Power System Technology, 2024, 18 (7): 139- 147. | |
9 | 解振学, 林帆, 王若谷, 等. 基于时序动态回归的超短期光伏发电功率预测方法[J]. 智慧电力, 2022, 50 (7): 45- 51. |
XIE Zhenxue, LIN Fan, WANG Ruogu, et al. Very short-term photovoltaic power forecasting method based on time series dynamic regression[J]. Smart Power, 2022, 50 (7): 45- 51. | |
10 | 王鹏翔, 沈娟, 王菁旸, 等. 基于PCA-LMD-WOA-ELM的短期光伏功率预测[J]. 智慧电力, 2022, 50 (6): 72- 78. |
WANG Pengxiang, SHEN Juan, WANG Jiangyang, et al. Short term photovoltaic power prediction based on PCA-LMD-WOA-ELM[J]. Smart Power, 2022, 50 (6): 72- 78. | |
11 | MILAD H S A, FAROOQ U, EL-HAWARY M E, et al. Neo-fuzzy integrated adaptive decayed brain emotional learning network for online time series prediction[J]. IEEE Access, 1037, 5, 1037- 1049. |
12 | ZHANG W Y, LI Q W, HE Q F. Application of machine learning methods in photovoltaic output power prediction: a review[J]. 2022, 14(2): 022701. |
13 |
DATTA S, BAUL A, SARKER G C, et al. A comprehensive review of the application of machine learning in fabrication and implementation of photovoltaic systems[J]. IEEE Access, 2023, 11, 77750- 77778.
DOI |
14 | 吴硕. 光伏发电系统功率预测方法研究综述[J]. 热能动力工程, 2021, 36 (8): 1- 7. |
WU Shuo. Review of power forecasting methods of photovoltaic power generation system[J]. Journal of Engineering for Thermal Energy and Power, 2021, 36 (8): 1- 7. | |
15 | 董存, 王铮, 白捷予, 等. 光伏发电功率超短期预测方法综述[J]. 高电压技术, 2023, 49 (7): 2938- 2951. |
DONG Cun, WANG Zheng, BAI Jieyu, et al. Review of ultra-short-term forecasting methods for photovoltaic power generation[J]. High Voltage Engineering, 2023, 49 (7): 2938- 2951. | |
16 |
MELLIT A, MASSI PAVAN A, OGLIARI E, et al. Advanced methods for photovoltaic output power forecasting: a review[J]. Applied Sciences, 2020, 10 (2): 487.
DOI |
17 | 孟安波, 许炫淙, 陈嘉铭, 等. 基于强化学习和组合式深度学习模型的超短期光伏功率预测[J]. 电网技术, 2021, 45 (12): 4721- 4728. |
MENG Anbo, XU Xuancong, CHEN Jiaming, et al. Ultra short term photovoltaic power prediction based on reinforcement learning and combined deep learning model[J]. Power System Technology, 2021, 45 (12): 4721- 4728. | |
18 |
ROSATO A, ALTILIO R, ARANEO R, et al. Prediction in photovoltaic power by neural networks[J]. Energies, 2017, 10 (7): 1003.
DOI |
19 | 朱琼锋, 李家腾, 乔骥, 等. 人工智能技术在新能源功率预测的应用及展望[J]. 中国电机工程学报, 2023, 43 (8): 3027- 3048. |
ZHU Qiongfeng, LI Jiateng, QIAO Ji, et al. Application and prospect of artificial intelligence technology in renewable energy forecasting[J]. Proceedings of the CSEE, 2023, 43 (8): 3027- 3048. | |
20 | 张佳伟, 张自嘉. 基于PSO-BP神经网络的短期光伏系统发电预测[J]. 可再生能源, 2012, 30 (8): 28- 32. |
ZHANG Jiawei, ZHANG Zijia. Short-term photovoltaic system power forecasting based on PSO-BP neural network[J]. Renewable Energy Resources, 2012, 30 (8): 28- 32. | |
21 |
谢少华, 何山, 闫学勤, 等. 基于SSA-BP神经网络的光伏短期功率预测[J]. 浙江工业大学学报, 2022, 50 (6): 628- 633.
DOI |
XIE Shaohua, HE Shan, YAN Xueqin, et al. Short term photovoltaic power prediction based on SSA-BP neural network[J]. Journal of Zhejiang University of Technology, 2022, 50 (6): 628- 633.
DOI |
|
22 |
宋绍剑, 李博涵. 基于LSTM网络的光伏发电功率短期预测方法的研究[J]. 可再生能源, 2021, 39 (5): 594- 602.
DOI |
SONG Shaojian, LI Bohan. Short-term forecasting method of photovoltaic power based on LSTM[J]. Renewable Energy Resources, 2021, 39 (5): 594- 602.
DOI |
|
23 | 刘国海, 孙文卿, 吴振飞, 等. 基于Attention-GRU的短期光伏发电功率预测[J]. 太阳能学报, 2022, 43 (2): 226- 232. |
LIU Guohai, SUN Wenqing, WU Zhenfei, et al. Short-term photovoltaic power forecasting based on Attention-GRU model[J]. Acta Energiae Solaris Sinica, 2022, 43 (2): 226- 232. | |
24 | 靳果, 朱清智, 闫奇. 基于PCA和ML-ELM-AE的短期光伏功率预测[J]. 控制工程, 2021, 28 (9): 1787- 1796. |
JIN Guo, ZHU Qingzhi, YAN Qi. Short-term photovoltaic power prediction based on PCA and ML-ELM-AE[J]. Control Engineering of China, 2021, 28 (9): 1787- 1796. | |
25 |
WANG J Z, YU Y, ZENG B, et al. Hybrid ultra-short-term PV power forecasting system for deterministic forecasting and uncertainty analysis[J]. Energy, 2024, 288, 129898.
DOI |
26 |
KHAN Z A, HUSSAIN T, BAIK S W. Dual stream network with attention mechanism for photovoltaic power forecasting[J]. Applied Energy, 2023, 338, 120916.
DOI |
27 |
HASHIM F A, HUSSIEN A G. Snake optimizer: a novel meta-heuristic optimization algorithm[J]. Knowledge-Based Systems, 2022, 242, 108320.
DOI |
[1] | 战文华, 车建峰, 王勃, 丁禹. 基于网格化数值天气预报的区域光伏发电多输出功率预测方法[J]. 中国电力, 2024, 57(3): 144-151. |
[2] | 张娜, 任强, 刘广忱, 郭力萍, 李静宇. 基于VMD-GWO-ELMAN的光伏功率短期预测方法[J]. 中国电力, 2022, 55(5): 57-65. |
[3] | 周艳真, 查显煜, 兰健, 郭庆来, 孙宏斌, 薛峰, 王胜明. 基于数据增强和深度残差网络的电力系统暂态稳定预测[J]. 中国电力, 2020, 53(1): 22-31. |
[4] | 梁适春, 张晓冬, 林培峰, 牛萌. 一种混合储能光伏发电系统的功率预测算法[J]. 中国电力, 2014, 47(3): 24-27. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||