中国电力 ›› 2024, Vol. 57 ›› Issue (12): 30-40.DOI: 10.11930/j.issn.1004-9649.202402033

• 面向新型电力系统的源荷预测技术 • 上一篇    下一篇

基于复杂特征提取和Sinkhorn距离的风光荷多阶段场景树生成方法

王蕊(), 傅质馨(), 王健(), 刘皓明()   

  1. 河海大学 电气与动力工程学院,江苏 南京 211100
  • 收稿日期:2024-02-07 出版日期:2024-12-28 发布日期:2024-12-27
  • 作者简介:王蕊(2000—),女,硕士研究生,从事电力系统规划研究,E-mail:221606030095@hhu.edu.cn
    傅质馨(1983—),女,博士,副教授,从事可再生能源发电技术和物联网技术研究,E-mail:zhixinfu@hhu.edu.cn
    王健(1993—),男,通信作者,博士,讲师,从事配电网运行与规划研究,E-mail:eewangjian@hhu.edu.cn
    刘皓明(1977—),男,博士,教授,从事智能电网、电力系统优化运行和电力市场研究,E-mail:liuhaom@hhu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(面向规模化异质弹性资源接入的配电系统可行域表征及分层协同优化运行研究,52207091);江苏省自然科学基金资助项目(BK20220977)。

A Multi-stage Scenario Tree Generation Method for Wind-Solar Load Based on Complex Feature Extraction and Sinkhorn Distance

Rui WANG(), Zhixin FU(), Jian WANG(), Haoming LIU()   

  1. School of Electrical and Power Engineering, Hohai University, Nanjing 211100, China
  • Received:2024-02-07 Online:2024-12-28 Published:2024-12-27
  • Supported by:
    This work is supported by National Natural Science Foundation of China (Research on Feasible Region Characterization and Hierarchically Coordinated Optimal Operation of Distribution System with Large-Scale Heterogeneous Elastic Resource, No.52207091), Natural Science Foundation of Jiangsu Province (No.BK20220977).

摘要:

新能源发电出力和负荷长期增长的不确定性增加了电网规划复杂性,开展新能源出力和负荷长时间尺度上的不确定性分析,对电网的规划与建设具有重要意义。提出了一种基于复杂特征提取和Sinkhorn距离的风光荷多阶段场景树生成方法。首先,为提高风光荷场景的聚类效率,提出基于堆叠稀疏自编码器的风光荷场景特征提取方法,并采用基于密度峰值改进的近邻传播算法对风光荷场景特征集合进行聚类,获得风光荷典型曲线,作为场景树的根节点;然后,考虑负荷不同增长率,逐年生成风光荷场景树,并提出基于Sinkhorn距离的场景树削减方法以降低场景树的规模;最后,算例仿真结果表明,所提方法计算效率高,生成的风光荷多阶段场景树可反映风光出力和负荷增长的不确定性。

关键词: 场景树, 堆叠稀疏自编码器, 改进近邻传播算法, Sinkhorn距离, 负荷不确定性

Abstract:

The uncertainty in the long-term growth of renewable energy generation output and load has heightened the complexity of power grid planning. Conducting an uncertainty analysis on the long-term scale of renewable energy output and load is of significant importance for the planning and construction of the power grid. To address this issue, a multi-stage scenario tree generation method for wind-solar load based on complex feature extraction and Sinkhorn distance was proposed. Firstly, to enhance the clustering efficiency of wind-solar load scenarios, a method based on stacked sparse autoencoders for feature extraction of wind-solar load scenarios was introduced. The feature set of wind-solar load scenarios was clustered by using an improved affinity propagation algorithm based on density peak, and typical curves of wind-solar load were obtained as the root nodes of the scenario tree. Subsequently, by considering different growth rates in load, a yearly generation of wind-solar load scenario trees was performed, and a scenario tree reduction method based on Sinkhorn distance was proposed to reduce the size of the scenario tree. Finally, a simulation example showed that the proposed method had high calculation efficiency, and the generated multi-stage scenario tree for wind-solar load can reflect the uncertainty of wind-solar output and load growth.

Key words: scenario tree, stacked sparse autoencoder, improved affinity propagation algorithm, Sinkhorn distance, load uncertainty