中国电力 ›› 2024, Vol. 57 ›› Issue (12): 41-49.DOI: 10.11930/j.issn.1004-9649.202401015

• 面向新型电力系统的源荷预测技术 • 上一篇    下一篇

基于TDE-SO-AWM-GRU的光伏发电功率预测模型

李翰章1(), 冯江涛1(), 王鹏程2, 荣澔洁3, 柴宇唤1   

  1. 1. 山西大学 自动化与软件学院,山西 太原 030006
    2. 山西平朔煤矸石发电有限责任公司,山西 平朔 036006
    3. 山西河坡发电有限责任公司,山西 阳泉 045000
  • 收稿日期:2024-01-03 出版日期:2024-12-28 发布日期:2024-12-27
  • 作者简介:李翰章(1997—),男,硕士研究生,从事深度学习与新能源智能优化调度研究,E-mail:mycroft0928@163.com
    冯江涛(1969—),女,通信作者,硕士,副教授,从事自动化装置与技术研究,E-mail:fengjiangtao@sxu.edu.cn
  • 基金资助:
    国家自然科学基金资助项目(高阶多智能体系统预设时间安全控制及电力系统应用,62373231)。

Photovoltaic Power Prediction Model Based on TDE-SO-AWM-GRU

Hanzhang LI1(), Jiangtao FENG1(), Pengcheng WANG2, Haojie RONG3, Yuhuan CHAI1   

  1. 1. School of Automation and Software Engineering, Shanxi University, Taiyuan 030006, China
    2. Shanxi Pingshuo Coal Gangue Power Generation Co., Ltd., Pingshuo 036006, China
    3. Shanxi Hepo Power Generation Company Limited, Yangquan 045000, China
  • Received:2024-01-03 Online:2024-12-28 Published:2024-12-27
  • Supported by:
    This work is supported by National Natural Science Foundation of China (High-Order Multi-agent System Preset Time Security Control and Power System Applications, No.62373231).

摘要:

精确预测光伏发电功率对电网的安全与经济运行具有重要的意义,但因光伏发电具有时序性、间歇性、波动性以及高非线性等特征,难以深度挖掘数据隐含信息。针对此类问题,提出了一种基于结合时变数据增强(time-varying data enhancement,TDE)、蛇优化算法(snake optimizer,SO)、自适应权重模块(adaptive weight module,AWM)和门控循环单元(gated-recurrent unit,GRU)的光伏发电功率预测模型,通过强相关TDE提升数据特征的表现力,并构造全新的输入矩阵,然后利用AWM对增强后的输入矩阵进行自动赋权处理进入GRU进行预测,同时考虑到组合模型超参数选择困难的问题,引入SO对模型的最佳阈值进行寻找以发挥模型最大性能。最后,使用某光伏发电站实际数据对模型进行验证,结果表明:所提模型可有效提升光伏发电功率的预测精度。

关键词: 光伏功率预测, 数据增强, 自适应权重模块, 蛇优化算法

Abstract:

Accurate prediction of photovoltaic (PV) power is of great significance for the safe and economic operation of power grids, but PV power generation is characterized by time-varying, intermittent, fluctuating, and high nonlinearity characteristics due to the combined effects of multiple meteorological factors, which makes it difficult to deeply explore the implicit information of the data. To solve such problems, a PV power prediction model based on time-varying data enhancement (TDE), snake optimizer (SO), adaptive weight module (AWM), and gated recurrent unit (GRU) was proposed. The expression of data features was improved by TDE with strong correlation, and a new input matrix was constructed. Then, the enhanced input matrix was automatically weighted by AWM and entered into GRU for prediction. At the same time, by considering the difficulty of hyperparameter selection of the combined model, SO was introduced to find the optimal threshold of the model to maximize the performance of the model. Finally, the model was validated using actual data from a PV power station, and the results show that the proposed model can effectively improve the prediction accuracy of PV power.

Key words: photovoltaic power prediction, data enhancement, adaptive weight module, snake optimizer