中国电力 ›› 2025, Vol. 58 ›› Issue (6): 172-179.DOI: 10.11930/j.issn.1004-9649.202409031

• 新能源与储能 • 上一篇    下一篇

基于FCM-SENet-TCN的低压台区光伏超短期功率预测方法

魏伟(), 余鹤(), 叶利(), 汪应春()   

  1. 国网湖北省电力有限公司营销服务中心(计量中心),湖北 武汉 443080
  • 收稿日期:2024-09-05 发布日期:2025-06-30 出版日期:2025-06-28
  • 作者简介:
    魏伟(1989),男,高级工程师,从事电力计量技术、电力设备状态评估技术、碳计量技术研究,E-mail:1036243440@qq.com
    余鹤(1984),男,高级工程师,从事电力计量技术、采集技术研究,E-mail:yuhe@126.com
    叶利(1979),男,正高级工程师,从事电能计量技术、通信组网技术研究,E-mail:yel16@163.com
    汪应春(1981),男,高级工程师,从事电能计量技术、电力设备状态评价技术研究,E-mail:wangyc@126.com
  • 基金资助:
    国网湖北省电力有限公司科技项目(521543230003)。

Low Voltage Substation Photovoltaic Ultra Short Term Power Prediction Method Based on FCM-SENet-TCN

WEI Wei(), YU He(), YE Li(), WANG Yingchun()   

  1. State Grid Hubei Marketing Service Center (Measurement Center), Wuhan 443080, China
  • Received:2024-09-05 Online:2025-06-30 Published:2025-06-28
  • Supported by:
    This work is supported by State Grid Hubei Electric Power Co., Ltd. Technology Project (No.521543230003)

摘要:

现有光伏功率预测的方法在应对低压台区分布式光伏时,存在初始数据过于冗余、预测特征提取困难,进而导致预测精度不足的问题。提出一种基于FCM-SENet-TCN的低压台区光伏超短期功率预测方法。首先,利用模糊C均值聚类算法(fuzzy cmeans,FCM)充分挖掘多源气象环境数据,将初始数据集以不同天气进行聚类,降低初始数据冗余度;其次,将压缩和激励网络(squeeze-and-excitation networks,SENet)融入时间卷积网络(temporal convolutional network,TCN),高效提取复杂特征并提高预测精度;最后,应用平均绝对百分比误差和均方根误差作为评价指标,对预测结果进行评估。仿真结果表明:所提预测方法可以充分利用初始气象数据,能够针对低压台区分布式光伏发电机组出力特点,做出更为精确的超短期功率预测。

关键词: 低压台区, 光伏功率预测, 模糊C均值聚类

Abstract:

The existing methods for predicting photovoltaic power face problems such as excessive initial data redundancy and difficulty in extracting predictive features when facing distributed photovoltaics in low-voltage substations, resulting in insufficient prediction accuracy. Therefore, this article proposes a low-voltage photovoltaic ultra short term power prediction method based on FCM-SENet TCN. Firstly, the fuzzy C-means clustering algorithm (FCM) is used to fully explore multi-source meteorological environment data, clustering the initial dataset with different weather conditions to reduce initial data redundancy; Secondly, the Squeeze and Excitation Networks (SENet) will be integrated into the Temporal Convolutional Network (TCN) to efficiently extract complex features and improve prediction accuracy; Finally, the average absolute percentage error and root mean square error are used as evaluation indicators to assess the prediction results. The simulation results show that the proposed prediction method can fully utilize the initial meteorological data and make more accurate ultra short term power predictions based on the output characteristics of distributed photovoltaic generators in low-voltage substations.

Key words: low voltage substation area, photovoltaic power prediction, fuzzy C-means clustering


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?