中国电力 ›› 2024, Vol. 57 ›› Issue (5): 168-177.DOI: 10.11930/j.issn.1004-9649.202307030
史子轶1(), 夏向阳1(
), 刘佳斌1, 谷阳洋2, 王玉龙2, 洪佳瑶1
收稿日期:
2023-07-10
接受日期:
2023-12-26
出版日期:
2024-05-28
发布日期:
2024-05-16
作者简介:
史子轶(1998—),女,硕士研究生,从事配电网运行状态评估研究,E-mail:2115269589@qq.com基金资助:
Ziyi SHI1(), Xiangyang XIA1(
), Jiabin LIU1, Yangyang GU2, Yulong WANG2, Jiayao HONG1
Received:
2023-07-10
Accepted:
2023-12-26
Online:
2024-05-28
Published:
2024-05-16
Supported by:
摘要:
低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density peaks clustering,ADPC)聚类的低压台区拓扑识别方法。该方法利用动态时间弯曲(dynamic time warping,DTW)距离度量低压台区用户间电压序列的相似性,通过AKNN异常检验算法检验并校正异常的用户与变压器之间的关系(简称“户变关系”),在得到正确户变关系的基础上,采用ADPC聚类算法对台区内用户进行相位识别;最后,通过实际台区算例分析验证了该方法不需要人为设置参数,能有效实现低压台区的拓扑识别,具有较高的适用性与准确性。
史子轶, 夏向阳, 刘佳斌, 谷阳洋, 王玉龙, 洪佳瑶. 基于AKNN异常检验与ADPC聚类的低压台区拓扑识别方法[J]. 中国电力, 2024, 57(5): 168-177.
Ziyi SHI, Xiangyang XIA, Jiabin LIU, Yangyang GU, Yulong WANG, Jiayao HONG. Low-Voltage Substation Area Topology Recognition Method Based on AKNN Anomaly Detection and ADPC Clustering[J]. Electric Power, 2024, 57(5): 168-177.
户变关系真实情况 | 户变关系检验情况 | |||
异常 | 正常 | |||
异常 | ||||
正常 |
表 1 户变关系检验结果混淆矩阵
Table 1 Confusion matrix of user-transformer relationship test results
户变关系真实情况 | 户变关系检验情况 | |||
异常 | 正常 | |||
异常 | ||||
正常 |
用户编号 | 识别结果 | 正确率/% | ||
1~6号、8~14号、16~25号、27~31号、33~37号 | A相 | 100 | ||
38~40号、42~51号、53~61号、63~86号 | B相 | 100 | ||
87~95号、97~113号、115~126号 | C相 | 100 |
表 2 台区用户相位识别结果
Table 2 Low-voltage station area users phase identification results
用户编号 | 识别结果 | 正确率/% | ||
1~6号、8~14号、16~25号、27~31号、33~37号 | A相 | 100 | ||
38~40号、42~51号、53~61号、63~86号 | B相 | 100 | ||
87~95号、97~113号、115~126号 | C相 | 100 |
方法 | ARI | |||||||
正常情况 | 缺失率 为5% | 缺失率 为10% | 缺失率 为15% | |||||
DTW | 1.00 | 1.00 | 0.97 | 0.94 | ||||
Pearson相似性 (最近邻点插值) | 1.00 | 0.95 | 0.87 | 0.82 | ||||
Pearson相似性 (线性插值) | 1.00 | 0.97 | 0.92 | 0.85 | ||||
欧式距离 (最近邻点插值) | 0.93 | 0.89 | 0.81 | 0.73 | ||||
欧式距离 (线性插值) | 0.97 | 0.93 | 0.83 | 0.78 |
表 3 不同情况下相似性度量算法对比
Table 3 Comparison of similarity measurement algorithms in different cases
方法 | ARI | |||||||
正常情况 | 缺失率 为5% | 缺失率 为10% | 缺失率 为15% | |||||
DTW | 1.00 | 1.00 | 0.97 | 0.94 | ||||
Pearson相似性 (最近邻点插值) | 1.00 | 0.95 | 0.87 | 0.82 | ||||
Pearson相似性 (线性插值) | 1.00 | 0.97 | 0.92 | 0.85 | ||||
欧式距离 (最近邻点插值) | 0.93 | 0.89 | 0.81 | 0.73 | ||||
欧式距离 (线性插值) | 0.97 | 0.93 | 0.83 | 0.78 |
方法 | 正确率 | 精准率 | 召回率 | F值 | ||||
本文方法 | 1.00 | 1.00 | 1.00 | 1.00 | ||||
LOF | 0.96 | 0.67 | 0.89 | 0.76 | ||||
KNN | 0.92 | 0.47 | 0.78 | 0.59 |
表 4 各户变关系检验算法评价指标对比
Table 4 Comparison of evaluation indexes of user-transformer relationship test algorithms
方法 | 正确率 | 精准率 | 召回率 | F值 | ||||
本文方法 | 1.00 | 1.00 | 1.00 | 1.00 | ||||
LOF | 0.96 | 0.67 | 0.89 | 0.76 | ||||
KNN | 0.92 | 0.47 | 0.78 | 0.59 |
方法 | ARI | |||||||||
第1天 | 第2天 | 第3天 | 第4天 | 平均 | ||||||
本文方法 | 1.00 | 0.97 | 0.95 | 1.00 | 0.98 | |||||
K-means | 0.68 | 0.71 | 0.72 | 0.70 | 0.70 | |||||
Birch | 0.80 | 0.82 | 0.79 | 0.81 | 0.81 |
表 5 各相位识别算法评价指标对比
Table 5 Comparison of evaluation indexes of phase identification algorithms
方法 | ARI | |||||||||
第1天 | 第2天 | 第3天 | 第4天 | 平均 | ||||||
本文方法 | 1.00 | 0.97 | 0.95 | 1.00 | 0.98 | |||||
K-means | 0.68 | 0.71 | 0.72 | 0.70 | 0.70 | |||||
Birch | 0.80 | 0.82 | 0.79 | 0.81 | 0.81 |
1 | 张丽强. 基于智能电表数据的供电网络拓扑识别方法研究[D]. 济南: 山东大学, 2020. |
ZHANG Liqiang. Research on topology identification method of power supply network based on smart meter data[D]. Jinan: Shandong University, 2020. | |
2 |
胡明月, 张慧芬, 苗淑平, 等. 基于改进鸽群算法的台区三相负荷不平衡相序调整方法[J]. 中国电力, 2022, 55 (9): 121- 128.
DOI |
HU Mingyue, ZHANG Huifen, MIAO Shuping, et al. Phase sequence adjustment method for three-phase load imbalance in station area based on improved pigeon-inspired optimization[J]. Electric Power, 2022, 55 (9): 121- 128.
DOI |
|
3 | 李明维, 张传远, 马晓昆, 等. 低压配电台区网络拓扑和相别自动辨识技术研究[J]. 电气时代, 2018, (10): 62- 63. |
4 |
张培玲, 赵可可. 基于单频通信的低压电力线通信系统设计与实现[J]. 中国电力, 2023, 56 (3): 118- 127, 136.
DOI |
ZHANG Peiling, ZHAO Keke. Design and implementation of low voltage power communication system based on single frequency communication[J]. Electric Power, 2023, 56 (3): 118- 127, 136.
DOI |
|
5 |
单瑞卿, 盛阳, 苏盛, 等. 考虑攻击方身份的电力监控系统网络安全风险分析[J]. 电力科学与技术学报, 2022, 37 (5): 3- 16.
DOI |
SHAN Ruiqing, SHENG Yang, SU Sheng, et al. Risk analysis of power system cyber security considering identity of malicious adversaries[J]. Journal of Electric Power Science and Technology, 2022, 37 (5): 3- 16.
DOI |
|
6 | 宋玮琼, 郭帅, 李冀, 等. 基于电压时序数据的配电台区户变关系智能识别[J]. 电力系统及其自动化学报, 2022, 34 (1): 48- 55. |
SONG Weiqiong, GUO Shuai, LI Ji, et al. Intelligent recognition of user-transformer relationship in distribution station area based on time series voltage data[J]. Proceedings of the CSU-EPSA, 2022, 34 (1): 48- 55. | |
7 | 连子宽, 姚力, 刘晟源, 等. 基于t-SNE降维和BIRCH聚类的单相用户相位及表箱辨识[J]. 电力系统自动化, 2020, 44 (8): 176- 184. |
LIAN Zikuan, YAO Li, LIU Shengyuan, et al. Phase and meter box identification for single-phase users based on t-SNE dimension reduction and BIRCH clustering[J]. Automation of Electric Power Systems, 2020, 44 (8): 176- 184. | |
8 | 陈招安, 黄纯, 张志丹, 等. 基于T型灰色关联度和KNN算法的低压配电网台区拓扑识别方法[J]. 电力系统保护与控制, 2021, 49 (1): 163- 169. |
CHEN Zhaoan, HUANG Chun, ZHANG Zhidan, et al. Topology identification method of a low voltage distribution network based on T-type grey correlation degree and KNN algorithm[J]. Power System Protection and Control, 2021, 49 (1): 163- 169. | |
9 | 崔雪原, 刘晟源, 金伟超, 等. 基于APAA和改进DBSCAN算法的户变关系及相位识别方法[J]. 电网技术, 2021, 45 (8): 3034- 3043. |
CUI Xueyuan, LIU Shengyuan, JIN Weichao, et al. Consumer-transformer relationship and phase identification based on APAA and improved DBSCAN algorithm[J]. Power System Technology, 2021, 45 (8): 3034- 3043. | |
10 |
徐明昕, 赵健, 王小宇, 等. 基于电压聚类和关联卷积的配电网户变关系识别方法[J]. 电力系统保护与控制, 2022, 50 (4): 92- 102.
DOI |
XU Mingxin, ZHAO Jian, WANG Xiaoyu, et al. Transformer-customer identification method for a low-voltage distribution network based on voltage clustering and incidence convolution[J]. Power System Protection and Control, 2022, 50 (4): 92- 102.
DOI |
|
11 | 唐捷, 蔡永智, 李其霖, 等. 基于三相表特征约束聚类的低压台区用户相序识别方法[J]. 电力系统自动化, 2022, 46 (8): 60- 67. |
TANG Jie, CAI Yongzhi, LI Qilin, et al. Phase sequence identification method for users in low-voltage distribution-station area based on feature constraint clustering of three-phase meter[J]. Automation of Electric Power Systems, 2022, 46 (8): 60- 67. | |
12 |
ZHAO Y, TU Z D, XIAO Y, et al. Electrical principles of verification of the topological structure of a low-voltage distribution network based on voltage from an Advanced Metering Infrastructure[J]. The Journal of Engineering, 2019, 2019 (11): 8218- 8224.
DOI |
13 | 赖煊平. 基于数据驱动的低压配电网拓扑识别及应用研究[D]. 北京: 华北电力大学, 2022. |
LAI Xuanping. Data-driven topology identification and application of low-voltage distribution network[D]. Beijing: North China Electric Power University, 2022. | |
14 |
韩平平, 陈思远, 张楠, 等. 考虑分布式光伏的低压台区线损异常辨识方法[J]. 电力系统保护与控制, 2023, 51 (8): 140- 148.
DOI |
HAN Pingping, CHEN Siyuan, ZHANG Nan, et al. Line loss anomaly identification method for low-voltage station area considering distributed PV[J]. Power System Protection and Control, 2023, 51 (8): 140- 148.
DOI |
|
15 | 李海林. 时间序列数据挖掘中的特征表示与相似性度量方法研究[D]. 大连: 大连理工大学, 2012. |
LI Hailin. Research on feature representation and similarity measure methods in time series data mining[D]. Dalian: Dalian University of Technology, 2012. | |
16 |
HAN T, PENG Q K, ZHU Z B, et al. A pattern representation of stock time series based on DTW[J]. Physica A:Statistical Mechanics and Its Applications, 2020, 550, 124161.
DOI |
17 | 王玲, 周南, 申鹏. 基于自适应k近邻的时间序列异常模式识别[J]. 计算机研究与发展, 2023, 60 (1): 125- 139. |
WANG Ling, ZHOU Nan, SHEN Peng. Time series anomaly pattern recognition based on adaptive k nearest neighbor[J]. Journal of Computer Research and Development, 2023, 60 (1): 125- 139. | |
18 | WU X, KUMAR V. The top ten algorithms in data mining [M]. Florida: CRC Press, 2010: 151–158. |
19 | 邹咸林. 自然最近邻居在高维数据结构学习中的应用[D]. 重庆: 重庆大学, 2011. |
ZOU Xianlin. Learning structure features in high dimensional data based on natural nearest neighbor[D]. Chongqing: Chongqing University, 2011. | |
20 | PUKELSHEIM F. The three sigma rule[J]. The American Statistician, 1994, 48 (2): 88- 91. |
21 | 卢鋆, 吴忠望, 王宇, 等. 基于kNN算法的异常行为检测方法研究[J]. 计算机工程, 2007, 33 (7): 133- 134, 138. |
LU Jun, WU Zhongwang, WANG Yu, et al. Research on abnormal behavior detection based on kNN algorithm[J]. Computer Engineering, 2007, 33 (7): 133- 134, 138. | |
22 |
RODRIGUEZ A, LAIO A. Clustering by fast search and find of density peaks[J]. Science, 2014, 344 (6191): 1492- 1496.
DOI |
23 | QIAN P J. Fast graph-based relaxed clustering for large data sets using minimal enclosing ball[J]. IEEE Transactions on Systems, Man, and Cybernetics Part B, 2012, 42(3): 672–687. |
24 | 肖勇, 赵云, 涂治东, 等. 基于改进的皮尔逊相关系数的低压配电网拓扑结构校验方法[J]. 电力系统保护与控制, 2019, 47 (11): 37- 43. |
XIAO Yong, ZHAO Yun, TU Zhidong, et al. Topology checking method for low voltage distribution network based on improved Pearson correlation coefficient[J]. Power System Protection and Control, 2019, 47 (11): 37- 43. | |
25 | 李亦非, 宋玮琼, 彭放, 等. 基于局部异常点检测算法的电能表飞走异常智能分析[J]. 电测与仪表, 2016, 53 (18): 69- 73. |
LI Yifei, SONG Weiqiong, PENG Fang, et al. The intelligent analysis on the trend anomaly of the electric energy meter based on LOF algorithm[J]. Electrical Measurement & Instrumentation, 2016, 53 (18): 69- 73. | |
26 | 廖志伟, 谢汛恺, 郑广昱, 等. 基于电压曲线形态特征聚类的低压台区相位辨识[J]. 电力系统自动化, 2023, 47 (7): 142- 149. |
LIAO Zhiwei, XIE Xunkai, ZHENG Guangyu, et al. Phase identification of low-voltage distribution station area based on morphological characteristic clustering of voltage curves[J]. Automation of Electric Power Systems, 2023, 47 (7): 142- 149. |
[1] | 胡志强, 叶远誉, 俞林刚, 伍栋文, 胡涛. 主动负荷参与的低压台区三相负荷不平衡自动均衡方法[J]. 中国电力, 2024, 57(2): 49-54. |
[2] | 柳守诚, 王淳, 邹智辉, 陈佳慧, 周晗, 刘伟, 张旭. 基于t-SNE降维和放射传播聚类算法的低压配电网相位识别[J]. 中国电力, 2023, 56(5): 108-117. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||