中国电力 ›› 2024, Vol. 57 ›› Issue (5): 168-177.DOI: 10.11930/j.issn.1004-9649.202307030

• 电网 • 上一篇    下一篇

基于AKNN异常检验与ADPC聚类的低压台区拓扑识别方法

史子轶1(), 夏向阳1(), 刘佳斌1, 谷阳洋2, 王玉龙2, 洪佳瑶1   

  1. 1. 长沙理工大学 电气与信息工程学院,湖南 长沙 410114
    2. 国网河南省电力有限公司舞阳县供电公司,河南 漯河 462400
  • 收稿日期:2023-07-10 接受日期:2023-12-26 出版日期:2024-05-28 发布日期:2024-05-16
  • 作者简介:史子轶(1998—),女,硕士研究生,从事配电网运行状态评估研究,E-mail:2115269589@qq.com
    夏向阳(1968—),男,通信作者,教授,博士生导师,从事电网稳定运行与控制技术研究,E-mail:307351045@qq.com
  • 基金资助:
    国家自然科学基金资助项目(51977014)。

Low-Voltage Substation Area Topology Recognition Method Based on AKNN Anomaly Detection and ADPC Clustering

Ziyi SHI1(), Xiangyang XIA1(), Jiabin LIU1, Yangyang GU2, Yulong WANG2, Jiayao HONG1   

  1. 1. School of Electrical and Information Engineering, Changsha University of Science and Technology, Changsha 410114, China
    2. State Grid Henan Electric Power Co., Ltd. Wuyang Power Supply Company, Luohe 462400, China
  • Received:2023-07-10 Accepted:2023-12-26 Online:2024-05-28 Published:2024-05-16
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.51977014).

摘要:

低压台区拓扑信息的准确记录是进行台区线损分析、三相不平衡治理等工作的基础。针对目前拓扑档案排查成本高且效率低的问题,提出一种基于自适应k近邻(adaptive k nearest neighbor,AKNN)异常检验和自适应密度峰值(adaptive density peaks clustering,ADPC)聚类的低压台区拓扑识别方法。该方法利用动态时间弯曲(dynamic time warping,DTW)距离度量低压台区用户间电压序列的相似性,通过AKNN异常检验算法检验并校正异常的用户与变压器之间的关系(简称“户变关系”),在得到正确户变关系的基础上,采用ADPC聚类算法对台区内用户进行相位识别;最后,通过实际台区算例分析验证了该方法不需要人为设置参数,能有效实现低压台区的拓扑识别,具有较高的适用性与准确性。

关键词: 低压台区, 户变关系, 相位识别, 自适应k近邻, 自适应密度峰值

Abstract:

The accurate record of topology information of the low-voltage station area is the basis for line loss analysis and three-phase imbalance control. Aiming at the problem of high cost and low efficiency of topology file investigation at present, a low-voltage substation area topology recognition method is proposed based on adaptive k nearest neighbor (AKNN) anomaly detection and adaptive density peaks clustering (ADPC). The similarity of voltage series between users in the low-voltage substation area is measured using dynamic time warping (DTW), and the abnormal relationship between users and transformer is checked and corrected with the AKNN anomaly detection algorithm. After getting the right relationship, the ADPC algorithm is used to identify the phase for users in the substation area. Finally, the case study of the actual substation area proves that the proposed method can effectively realize the topology identification of the low-voltage substation area without human parameter setting, and has high applicability and accuracy.

Key words: low-voltage substation area, user-transformer relationship, phase identification, adaptive k nearest neighbor, adaptive density peaks clustering