[1] 鲁宗相, 李海波, 乔颖. 含高比例可再生能源电力系统灵活性规划及挑战[J]. 电力系统自动化, 2016, 40(13): 147–158 LU Zongxiang, LI Haibo, QIAO Ying. Power system flexibility planning and challenges considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2016, 40(13): 147–158 [2] 时智勇, 王彩霞, 李琼慧. “十四五”中国海上风电发展关键问题[J]. 中国电力, 2020, 53(7): 8–17 SHI Zhiyong, WANG Caixia, LI Qionghui. Key issues of China's offshore wind power development in the “14th five-year plan”[J]. Electric Power, 2020, 53(7): 8–17 [3] 程耀华, 张宁, 王佳明, 等. 面向高比例可再生能源并网的输电网规划方案综合评价[J]. 电力系统自动化, 2019, 43(3): 33–42, 57 CHENG Yaohua, ZHANG Ning, WANG Jiaming, et al. Comprehensive evaluation of transmission network planning for integration of high-penetration renewable energy[J]. Automation of Electric Power Systems, 2019, 43(3): 33–42, 57 [4] 李晖. 考虑大规模新能源接入的电力系统规划研究及应用[D]. 北京: 华北电力大学(北京), 2017. LI Hui. Research and application of power system planning considering large-scale new energy power integration[D]. Beijing: North China Electric Power University, 2017. [5] 黄裕春. 计及间歇性能源发电的输电系统综合规划方法[D]. 杭州: 浙江大学, 2013. HUANG Yuchun. Integrated transmission system planning considering accommodation of intermittent generation sources[D]. Hangzhou: Zhejiang University, 2013. [6] 蒋霖, 郑倩薇, 王枫, 等. 考虑直接负荷控制与风电不确定性的输电网扩展规划[J]. 电力系统保护与控制, 2020, 48(3): 138–146 JIANG Lin, ZHENG Qianwei, WANG Feng, et al. Transmission network expansion planning considering direct load control and wind power uncertainty[J]. Power System Protection and Control, 2020, 48(3): 138–146 [7] 任大伟, 金晨, 侯金鸣, 等. 基于时序运行模拟的新能源配置储能替代火电的规划模型[J]. 中国电力, 2021, 54(7): 18–26 REN Dawei, JIN Cheng, HOU Jinming, et al. Planning model for renewable energy with energy storage replacing thermal power based on time series operation simulation[J]. Electric Power, 2021, 54(7): 18–26 [8] 程浩忠, 李隽, 吴耀武, 等. 考虑高比例可再生能源的交直流输电网规划挑战与展望[J]. 电力系统自动化, 2017, 41(9): 19–27 CHENG Haozhong, LI Jun, WU Yaowu, et al. Challenges and prospects for AC/DC transmission expansion planning considering high proportion of renewable energy[J]. Automation of Electric Power Systems, 2017, 41(9): 19–27 [9] 张宁, 胡兆光, 周渝慧, 等. 计及随机模糊双重不确定性的源网荷协同规划模型[J]. 电力系统自动化, 2016, 40(1): 39–44, 142 ZHANG Ning, HU Zhaoguang, ZHOU Yuhui, et al. Source-grid-load coordinated planning model considering randomness and fuzziness[J]. Automation of Electric Power Systems, 2016, 40(1): 39–44, 142 [10] MOREIRA A, STRBAC G, MORENO R, et al. A five-level MILP model for flexible transmission network planning under uncertainty: a min–max regret approach[J]. IEEE Transactions on Power Systems, 2018, 33(1): 486–501. [11] 王秀丽, 李淑慧, 陈皓勇, 等. 基于非支配遗传算法及协同进化算法的多目标多区域电网规划[J]. 中国电机工程学报, 2006, 26(12): 11–15 WANG Xiuli, LI Shuhui, CHEN Haoyong, et al. Multi-objective and multi-district transmission planning based on NSGA-Ⅱ and cooperative co-evolutionary algorithm[J]. Proceedings of the CSEE, 2006, 26(12): 11–15 [12] 罗娅. 考虑运行效率的输电网规划模型及方法研究[D]. 北京: 华北电力大学(北京), 2017. LUO Ya. Studying on models and methods of transmission network planning considering operating efficiency[D]. Beijing: North China Electric Power University, 2017. [13] 梁子鹏, 陈皓勇, 郑晓东, 等. 考虑风电极限场景的输电网鲁棒扩展规划[J]. 电力系统自动化, 2019, 43(16): 58–67 LIANG Zipeng, CHEN Haoyong, ZHENG Xiaodong, et al. Robust expansion planning of transmission network considering extreme scenario of wind power[J]. Automation of Electric Power Systems, 2019, 43(16): 58–67 [14] 徐浩. 考虑新能源接入的输电网规划研究[D]. 济南: 山东大学, 2019. XU Hao. Transmission network planning considering the integration of new energy resources[D]. Jinan: Shandong University, 2019. [15] 田书欣, 程浩忠, 曾平良, 等. 大型集群风电接入输电系统规划研究综述[J]. 中国电机工程学报, 2014, 34(10): 1566–1574 TIAN Shuxin, CHENG Haozhong, ZENG Pingliang, et al. Review of transmission planning for integrating large clusters of wind power[J]. Proceedings of the CSEE, 2014, 34(10): 1566–1574 [16] 叶健民, 蔡京陶, 王若愚, 等. 考虑风电场接入的输电网与储能扩展鲁棒规划[J]. 南方电网技术, 2019, 13(3): 25–32 YE Jianmin, CAI Jingtao, WANG Ruoyu, et al. Expansion robust planning of transmission network and energy storage considering wind farm integration[J]. Southern Power System Technology, 2019, 13(3): 25–32 [17] GBADAMOSI S L, NWULU N I. A multi-period composite generation and transmission expansion planning model incorporating renewable energy sources and demand response[J]. Sustainable Energy Technologies and Assessments, 2020, 39: 100726. [18] 柳璐, 程浩忠, 马则良, 等. 考虑全寿命周期成本的输电网多目标规划[J]. 中国电机工程学报, 2012, 32(22): 46–54, 19 LIU Lu, CHENG Haozhong, MA Zeliang, et al. Multi-objective transmission expansion planning considering life cycle cost[J]. Proceedings of the CSEE, 2012, 32(22): 46–54, 19 [19] 姜惠兰, 安星, 王亚微, 等. 基于改进NSGA2算法的考虑风机接入电能质量的多目标电网规划[J]. 中国电机工程学报, 2015, 35(21): 5405–5411 JIANG Huilan, AN Xing, WANG Yawei, et al. Improved NSGA2 algorithm based multi-objective planning of power grid with wind farm considering power quality[J]. Proceedings of the CSEE, 2015, 35(21): 5405–5411 [20] 辛培坤. 考虑输电价格影响的输电网多场景概率规划方法研究[D]. 北京: 华北电力大学(北京), 2018. XIN Peikun. Research on multi-scenario probabilistic transmission planning considering transmission price[D]. Beijing: North China Electric Power University, 2018. [21] 张衡, 程浩忠, 张建平, 等. 高比例风电背景下计及N-1安全网络约束的发输电优化规划[J]. 中国电机工程学报, 2018, 38(20): 5929–5936 ZHANG Heng, CHENG Haozhong, ZHANG Jianping, et al. Generation and transmission expansion planning considering N-1 security constraints with high penetration of wind power[J]. Proceedings of the CSEE, 2018, 38(20): 5929–5936 [22] DING Y, WANG P, GOEL L, et al. Long-term reserve expansion of power systems with high wind power penetration using universal generating function methods[J]. IEEE Transactions on Power Systems, 2011, 26(2): 766–774. [23] 杨知方, 钟海旺, 夏清, 等. 输电网结构优化问题研究综述和展望[J]. 中国电机工程学报, 2016, 36(2): 426–434 YANG Zhifang, ZHONG Haiwang, XIA Qing, et al. Review and prospect of transmission topology optimization[J]. Proceedings of the CSEE, 2016, 36(2): 426–434 [24] TRPOVSKI A, HAMACHER T. A comparative analysis of transmission system planning for overhead and underground power systems using AC and DC power flow[C]//2019 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe). Bucharest, Romania. IEEE, 2019: 1–5. [25] KHANABADI M, GHASEMI H, DOOSTIZADEH M. Optimal transmission switching considering voltage security and N-1 contingency analysis[J]. IEEE Transactions on Power Systems, 2013, 28(1): 542–550. [26] HAGHIGHAT H, ZENG B. Bilevel conic transmission expansion planning[J]. IEEE Transactions on Power Systems, 2018, 33(4): 4640–4642. [27] HONG S Y, CHENG H Z, ZENG P L, et al. Composite generation and transmission expansion planning with second order conic relaxation of AC power flow[C]//2016 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC). Xi'an, China. IEEE, 2016: 1688–1693. [28] BAI Y, ZHONG H W, XIA Q, et al. A conic programming approach to optimal transmission switching considering reactive power and voltage security[C]//2015 IEEE Power & Energy Society General Meeting. Denver, CO, USA. IEEE, 2015: 1–5. [29] 洪绍云, 程浩忠, 曾平良, 等. 输电网扩展优化规划研究综述[J]. 电网技术, 2016, 40(10): 3102–3107 HONG Shaoyun, CHENG Haozhong, ZENG Pingliang, et al. Review of transmission network expansion optimization planning[J]. Power System Technology, 2016, 40(10): 3102–3107 [30] KE D, SHI W H, BIE Z H, et al. Probability modeling on multiple time scales of wind power based on wind speed data[C]//2014 International Conference on Power System Technology. Chengdu, China. IEEE, 2014: 2590–2595. [31] GEORGIEV A, SULAKOV S. Modelling of hourly wind generation using pan-European climatic data base and weibull probability distribution[C]//2019 16th International Conference on the European Energy Market (EEM). Ljubljana, Slovenia. IEEE, 2019: 1–4.
|