中国电力 ›› 2025, Vol. 58 ›› Issue (3): 55-64.DOI: 10.11930/j.issn.1004-9649.202403093
• 高比例新能源接入电网的协调控制与优化运行 • 上一篇 下一篇
收稿日期:
2024-03-22
出版日期:
2025-03-28
发布日期:
2025-03-26
作者简介:
基金资助:
Pai LI1(), Hui LU1(
), Chi LI1(
), Hongbo DU2
Received:
2024-03-22
Online:
2025-03-28
Published:
2025-03-26
Supported by:
摘要:
多能互补发电系统能够充分发挥风光热储等资源的互补优势,提高能源利用效率,对构建低碳新型电力系统具有重要意义。协调配置多能互补发电系统中电/热储能容量有助于降低系统投资成本,提升新能源利用率和供电支撑能力。针对含风电/光伏/光热/储能的多能互补发电系统开展研究,建立了多能互补发电系统电/热储能容量双层协调优化模型。上层模型以系统年净收益最大为优化目标,优化电/热储能的容量;下层优化模型以系统供电缺额最小为目标,考虑系统可靠供电能力、风电/光伏/光热/储能运行、新能源利用率等约束,优化系统的发电运行状态。为求解双层协调优化模型,提出了模型非线性约束的线性化方法,以及基于值函数和分支定界相结合的启发式算法,能够实现模型的高效快速求解。基于典型的多能互补发电系统算例开展仿真测试,结果验证了所提双层优化配置模型及算法的有效性。
李湃, 卢慧, 李驰, 杜洪博. 多能互补发电系统电/热储能容量双层优化配置方法[J]. 中国电力, 2025, 58(3): 55-64.
Pai LI, Hui LU, Chi LI, Hongbo DU. Bi-level Capacity Optimization for Battery/Thermal Energy Storage System in Multi-energy Complementary Power Generation System[J]. Electric Power, 2025, 58(3): 55-64.
图 1 风电/光伏/光热/储能多能互补发电系统结构
Fig.1 Structure of multi-energy complementary power generation system with wind, PV power, concentrating solar power and battery energy storage
参数名称 | 数值 | |
风电场单位装机投资成本/(万元∙MW–1) | 600 | |
光伏电站单位装机投资成本/(万元∙MW–1) | 450 | |
储能电站单位装机投资成本/(万元∙MW–1) | 50 | |
储能电站单位容量投资成本/(万元∙(MW∙h)–1) | 200 | |
光热电站单位装机投资成本/(万元∙MW–1) | ||
储热装置单位容量投资成本/(万元∙(MW∙h)–1) | 30 | |
风电和光伏最大弃电率/% | 5 | |
储能电站充电效率 | 0.94 | |
储能电站放电效率 | 0.94 | |
光热电站的热-电转换效率 | 2.4 | |
光热电站的储热效率 | 0.98 | |
光热电站的放热效率 | 0.98 |
表 1 系统参数
Table 1 System parameters
参数名称 | 数值 | |
风电场单位装机投资成本/(万元∙MW–1) | 600 | |
光伏电站单位装机投资成本/(万元∙MW–1) | 450 | |
储能电站单位装机投资成本/(万元∙MW–1) | 50 | |
储能电站单位容量投资成本/(万元∙(MW∙h)–1) | 200 | |
光热电站单位装机投资成本/(万元∙MW–1) | ||
储热装置单位容量投资成本/(万元∙(MW∙h)–1) | 30 | |
风电和光伏最大弃电率/% | 5 | |
储能电站充电效率 | 0.94 | |
储能电站放电效率 | 0.94 | |
光热电站的热-电转换效率 | 2.4 | |
光热电站的储热效率 | 0.98 | |
光热电站的放热效率 | 0.98 |
参数 | 优化结果 | |
系统年净收益/万元 | ||
储能装机容量/MW | 291 | |
储能电池容量/(MW∙h) | 582 | |
储能电池时长/h | 2 | |
光热储热容量/(MW∙h) | ||
储热时长/h | 5.7 | |
系统供电缺额/(MW∙h) | 393.0 | |
风电利用率/% | 95.7 | |
光伏利用率/% | 96.6 |
表 2 基础场景优化结果
Table 2 Optimization results of basic scenario
参数 | 优化结果 | |
系统年净收益/万元 | ||
储能装机容量/MW | 291 | |
储能电池容量/(MW∙h) | 582 | |
储能电池时长/h | 2 | |
光热储热容量/(MW∙h) | ||
储热时长/h | 5.7 | |
系统供电缺额/(MW∙h) | 393.0 | |
风电利用率/% | 95.7 | |
光伏利用率/% | 96.6 |
方法 | 系统年净 收益/万元 | 系统供电缺 额/(MW∙h) | 计算耗时/s | |||
所提方法 | 393.0 | 8.1 | ||||
HPR问题最优解 | 0.1 |
表 3 优化结果与HPR问题最优解对比
Table 3 Comparison between optimization results and the optimal solution of HPR problem
方法 | 系统年净 收益/万元 | 系统供电缺 额/(MW∙h) | 计算耗时/s | |||
所提方法 | 393.0 | 8.1 | ||||
HPR问题最优解 | 0.1 |
参数 | 优化风光装机 | 固定风光装机 | ||
系统年净收益/万元 | ||||
风电装机容量/MW | 2000 | |||
光伏装机容量/MW | 579 | 2000 | ||
储能装机容量/MW | 332 | 291 | ||
储能电池容量/(MW∙h) | 664 | 582 | ||
光热储热容量/(MW∙h) | ||||
储热时长/h | 5.3 | 5.7 | ||
系统供电缺额/(MW∙h) | 393 | |||
风电利用率/% | 99.5 | 95.7 | ||
光伏利用率/% | 95.5 | 96.6 | ||
新能源利用率/% | 99.0 | 96.1 |
表 4 优化风光装机与固定风光装机的结果对比
Table 4 Comparison between optimized wind-solar installations and fixed wind-solar installations
参数 | 优化风光装机 | 固定风光装机 | ||
系统年净收益/万元 | ||||
风电装机容量/MW | 2000 | |||
光伏装机容量/MW | 579 | 2000 | ||
储能装机容量/MW | 332 | 291 | ||
储能电池容量/(MW∙h) | 664 | 582 | ||
光热储热容量/(MW∙h) | ||||
储热时长/h | 5.3 | 5.7 | ||
系统供电缺额/(MW∙h) | 393 | |||
风电利用率/% | 99.5 | 95.7 | ||
光伏利用率/% | 95.5 | 96.6 | ||
新能源利用率/% | 99.0 | 96.1 |
参数 | 场景1 | 场景2(基础场景) | 场景3 | |||
系统年净收益/万元 | ||||||
储能装机容量/MW | 98 | 291 | ||||
储能电池容量/(MW∙h) | 196 | 582 | ||||
光热储热容量/(MW∙h) | ||||||
储热时长/h | 5.7 | 5.7 | 5.7 | |||
供电缺额量/(MW∙h) | 0 | 393 | ||||
供电缺额时长/h | 0 | 61 | 243 |
表 5 不同外送功率下限场景下的优化结果
Table 5 Optimal results under different lower limit scenarios of external power transmission
参数 | 场景1 | 场景2(基础场景) | 场景3 | |||
系统年净收益/万元 | ||||||
储能装机容量/MW | 98 | 291 | ||||
储能电池容量/(MW∙h) | 196 | 582 | ||||
光热储热容量/(MW∙h) | ||||||
储热时长/h | 5.7 | 5.7 | 5.7 | |||
供电缺额量/(MW∙h) | 0 | 393 | ||||
供电缺额时长/h | 0 | 61 | 243 |
参数 | 0.001 | 0.005 | 0.01 (基础场景) | 0.02 | 0.05 | |||||
系统年净收益/万元 | ||||||||||
储能装机容量/MW | 299.1 | 295.5 | 291 | 282 | 255 | |||||
储能电池容量/(MW∙h) | 598.2 | 591 | 582 | 564 | 510 | |||||
储能电池时长/h | 2 | 2 | 2 | 2 | 2 | |||||
光热储热容量/(MW∙h) | ||||||||||
光热储热时长/h | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | |||||
系统供电缺额/(MW∙h) | 27.4 | 136.9 | 393.0 | 907.6 |
表 6 不同供电缺额系数下的优化结果
Table 6 Optimal results under different power supply shortage coefficients
参数 | 0.001 | 0.005 | 0.01 (基础场景) | 0.02 | 0.05 | |||||
系统年净收益/万元 | ||||||||||
储能装机容量/MW | 299.1 | 295.5 | 291 | 282 | 255 | |||||
储能电池容量/(MW∙h) | 598.2 | 591 | 582 | 564 | 510 | |||||
储能电池时长/h | 2 | 2 | 2 | 2 | 2 | |||||
光热储热容量/(MW∙h) | ||||||||||
光热储热时长/h | 5.7 | 5.7 | 5.7 | 5.7 | 5.7 | |||||
系统供电缺额/(MW∙h) | 27.4 | 136.9 | 393.0 | 907.6 |
1 | 国家能源局. 关于报送“十四五”电力源网荷储一体化和多能互补工作方案的通知[R]. 北京: 国家能源局, 2023. |
2 | 文云峰, 杨伟峰, 汪荣华, 等. 构建100%可再生能源电力系统述评与展望[J]. 中国电机工程学报, 2020, 40 (6): 1843- 1856. |
WEN Yunfeng, YANG Weifeng, WANG Ronghua. Review and prospect of toward 100% renewable energy power systems[J]. Proceedings of the CSEE, 2020, 40 (6): 1843- 1856. | |
3 | HAN Z X, FANG D B, YANG P W, et al. Cooperative mechanisms for multi-energy complementarity in the electricity spot market[J]. Energy economics, 2023, 127: 107108. |
4 | 潘尔生, 李晖, 肖晋宇, 等. 考虑大范围多种类能源互补的中国西部清洁能源开发外送研究[J]. 中国电力, 2018, 51 (9): 158- 164. |
PAN Ersheng, LI Hui, XIAO Jinyu, et al. Research on the development and transmission of clean energy in western china considering wide range coordination of multi-energy[J]. Electric Power, 2018, 51 (9): 158- 164. | |
5 | 熊文, 刘育权, 苏万煌, 等. 考虑多能互补的区域综合能源系统多种储能优化配置[J]. 电力自动化设备, 2019, 39 (1): 118- 126. |
XIONG Wen, LIU Yuquan, SU Wanhuang, et al. Optimal configuration of multi-energy storage in regional integrated energy system considering multi-energy complementation[J]. Electric Power Automation Equipment, 2019, 39 (1): 118- 126. | |
6 | 付文龙, 卓庆澳, 吴月超等. 多能互补提供频率支撑的储能容量分布鲁棒规划方法[J]. 电网技术, 2024, 48 (1): 282- 297. |
FU Wenlong, ZHUO Qingao, WU Yuechao, et al. Distributed robust planning for energy storage capacity with multi-energy complementarity providing frequency support[J]. Power system technology, 2024, 48 (1): 282- 297. | |
7 | ZHU Z, ZHANG D, MISCHKE P, et al. Electricity generation costs of concentrated solar power technologies in China based on operational plants[J]. Energy, 2015, 89, 65- 74. |
8 | 刘永前, 梁超, 阎洁, 等. 风-光电站中储能系统混合最优配置及其经济性研究[J]. 中国电力, 2020, 53 (12): 143- 150. |
LIU Yongqian, LIANG Chao, YAN Jie, et al. Optimal configuration and economic study of hybrid energy storage system in wind and solar power plants[J]. Electric Power, 2020, 53 (12): 143- 150. | |
9 | 杜尔顺, 张宁, 康重庆, 等. 太阳能光热发电并网运行及优化规划研究综述与展望[J]. 中国电机工程学报, 2016, 36 (21): 5765- 5775. |
DU Ershun, ZHANG Ning, KANG Chongqing, et al. Reviews and prospects of the operation and planning optimization for grid integrated concentrating solar power[J]. Proceedings of the CSEE, 2016, 36 (21): 5765- 5775. | |
10 | 屈小云, 吴鸣, 李奇等. 多能互补综合能源系统综合评价研究进展综述[J]. 中国电力, 2021, 54 (11): 153- 163. |
QU Xiaoyun, WU Ming, LI Qi, et al. Review on comprehensive evaluation of multi-energy complementary integrated energy systems[J]. Electric power, 2021, 54 (11): 153- 163. | |
11 | QI Y C, HU W, DONG Y, et al. Optimal configuration of concentrating solar power in multi energy power systems with an improved variational autoencoder[J]. Applied Energy, 2020, 274, 115124. |
12 | 王永利, 向皓, 郭璐, 等. 面向多能互补的分布式光伏与电氢混合储能规划优化研究[J]. 电网技术, 2024, 48 (2): 564- 576. |
WANG Yongli, XIANG Hao, GUO Lu, et al. Research on planning optimization of distributed photovoltaic and electro-hydrogen hybrid energy storage for multi-energy complementarity[J]. Power System Technology, 2024, 48 (2): 564- 576. | |
13 |
STARKE A R, CARDENIL J M, Escobar R, et al. Multi-objective optimization of hybrid CSP+PV system using genetic algorithm[J]. Energy, 2018, 147, 490- 503.
DOI |
14 | ZHANG X J, ELIA CAMPANA P, BI X J, et al. Capacity configuration of a hydro-wind-solar-storage bundling system with transmission constraints of the receiving-end power grid and its techno-economic evaluation[J]. Energy Conversion and Management, 2022, 270: 116177. |
15 | ZHANG H Y, LIAO K, YANG J W, et al. Frequency-constrained expansion planning for wind and photovoltaic power in wind-photovoltaic-hydro-thermal multi-power system[J]. Applied Energy, 2024, 356: 122401. |
16 | HUANG W J, ZHANG N, YANG J W, et al. Optimal configuration planning of multi-energy systems considering distributed renewable energy[J]. IEEE Transactions on Smart Grid, 2019, 10 (2): 1452- 1464. |
17 | 寇凌峰, 季宇, 吴鸣等. 多能互补系统全寿命周期优化配置方法[J]. 中国电力, 2020, 53 (12): 75- 82. |
KOU Lingfeng, JI Yu, WU Ming, et al. Optimal configuration of multi-energy complementary system considering full life cycle[J]. Electric Power, 2020, 53 (12): 75- 82. | |
18 | 刘树桦, 王建学, 李清涛. 多能互补复合电站的优化配置及其在系统电源规划中的应用[J]. 电网技术, 2021, 45 (8): 3006- 3015. |
LIU Shuhua, WANG Jianxue, LI Qingtao, et al. Optimal configuration of multi-energy complementary composite power plant and its application in generation expansion planning[J]. Power System Technology, 2021, 45 (8): 3006- 3015. | |
19 | 崔杨, 于世鹏, 王学斌, 等. 考虑系统调峰需求与光热电站收益平衡的储热容量优化配置[J]. 中国电机工程学报, 2023, 43 (22): 8745- 8754. |
CUI Yang, YU Shipeng, WANG Xuebin, et al. Optimal configuration of heat storage capacity considering the balance between system peak shaving demand and concentrating solar power plant revenue[J]. Proceedings of the CSEE, 2023, 43 (22): 8745- 8754. | |
20 | 邵志芳, 张东强. 基于合约负荷曲线的多能互补电力系统容量优化配置[J]. 电网技术, 2021, 45 (5): 1757- 1767. |
SHAO Zhifang, ZHANG Dongqiang. Capacity configuration optimization of multi-energy complementary power system based on contract load curve[J]. Power System Technology, 2021, 45 (5): 1757- 1767. | |
21 | 史昭娣, 王伟胜, 黄越辉, 等. 多能互补发电系统储电和储热容量分层优化规划方法[J]. 电网技术, 2020, 44 (9): 3263- 3271. |
SHI Zhaodi, WANG Weisheng, HUANG Yuehui, et al. Hierarchical optimization planning for electrical energy storage and heat storage capacity planning in multi-energy complementary generation system[J]. Power System Technology, 2020, 44 (9): 3263- 3271. | |
22 | 安源, 郑申印, 苏瑞, 等. 风光水储多能互补发电系统双层优化研究[J]. 太阳能学报, 2023, 44 (12): 510- 517. |
AN Yuan, ZHENG Shenyin, SU Rui. Research on two-layer optimization of wind-solar-water-storage multi-energy complementary power generation system[J]. Acta Energiae Solaris Sinica, 2023, 44 (12): 510- 517. | |
23 |
LI Z Y, SHAHIDEHPOUR M. Privacy-preserving collaborative operation of networked microgrids with the local utility grid based on enhanced benders decomposition[J]. IEEE Transactions on Smart Grid, 2020, 11 (3): 2638- 2651.
DOI |
24 | ZHU Z A, WANG L L, WANG X, et al. Complementary operations of multi-renewable energy systems with pumped storage[J]. CSEE Journal of Power and Energy Systems, 2023, 9 (5): 1866- 1880. |
25 | ZHANG H X, LU Z X, HU W, et al. Coordinated optimal operation of hydro–wind–solar integrated systems[J]. Applied Energy, 2019, 242, 883- 896. |
26 | 孙志媛, 彭博雅, 孙艳. 考虑多能互补的电力电量平衡优化调度策略[J]. 中国电力, 2024, 57 (1): 115- 122. |
SUN Zhiyuan, PENG Boya, SUN Yan. Optimal dispatch strategy of power and electricity balance based on multi-energy complementation[J]. Electric Power, 2024, 57 (1): 115- 122. | |
27 |
叶林, 屈晓旭, 么艳香, 等. 风光水多能互补发电系统日内时间尺度运行特性分析[J]. 电力系统自动化, 2018, 42 (4): 158- 164.
DOI |
YE Lin, QU Xiaoxu, YAO Yanxiang, et al. Analysis on intraday operation characteristics of hybrid wind-solar-hydro power generation system[J]. Automation of Electric Power System, 2018, 42 (4): 158- 164.
DOI |
|
28 |
KLEINERT T, LABBÉ M, LJUBIĆ I, et al. A survey on mixed-integer programming techniques in bilevel optimization[J]. EURO Journal on Computational Optimization, 2021, 9, 100007.
DOI |
29 |
AUGUSTO A A, DO COUTTO FILHO M B, DE SOUZA J C S, et al. Branch-and-bound guided search for critical elements in state estimation[J]. IEEE Transactions on Power Systems, 2019, 34 (3): 2292- 2301.
DOI |
30 |
HE C, LV Y F, MARTINI H, et al. A branch-and-bound approach for estimating covering functionals of convex bodies[J]. Journal of Optimization Theory and Applications, 2023, 196 (3): 1036- 1055.
DOI |
[1] | 汪林光, 李旭涛, 任勇, 谢小荣. 基于元启发式算法的新能源电力系统振荡稳定性最差工况搜索方法[J]. 中国电力, 2025, 58(3): 65-72. |
[2] | 齐国民, 李天野, 于洪, 卢博伦, 马宝中, 张文欣, 吴恩同, 肖先瑶. 基于MPC的户用光-储系统容量配置及运行优化模型[J]. 中国电力, 2025, 58(1): 185-195. |
[3] | 刘抒睿, 李培强, 陈家煜, 郭雅诗. 基于VMD分解下的皮尔逊相关性分析及T-tFD的混合储能容量配置[J]. 中国电力, 2024, 57(7): 82-97. |
[4] | 凡鹏飞, 李宝琴, 侯江伟, 李嵘, 宋崇明, 林凯骏. 配电网分布式电源经济可承载力评估[J]. 中国电力, 2024, 57(7): 196-202. |
[5] | 张雷, 肖伟栋, 蒋纯冰, 刘耀, 李少杰, 张吉. 光伏办公建筑的关键设备容量配置方法[J]. 中国电力, 2024, 57(3): 152-159, 169. |
[6] | 王朝亮, 肖涛, 李少杰, 张吉. 农村住宅建筑光储直柔系统性能研究[J]. 中国电力, 2024, 57(3): 160-169. |
[7] | 白望望, 杨德州, 李万伟, 王涛, 张耀忠. 基于HC-MOPSO的储能电站两阶段选址定容方法[J]. 中国电力, 2024, 57(12): 148-156. |
[8] | 袁慧宏, 翁时乐, 陈梁金, 朱奕弢, 张黎军, 齐蓓. 基于安全稳定运行驱动的“光储直柔”系统容量配置[J]. 中国电力, 2024, 57(11): 102-107. |
[9] | 李成, 张婕, 石轲, 薛明华, 冯波. 面向风电场的主动支撑电网型分散式储能控制策略与优化配置[J]. 中国电力, 2023, 56(12): 238-247. |
[10] | 蒋棹骏, 向月, 谈竹奎, 郭咏涛, 王扬, 周科. 计及需求响应的高比例清洁能源园区储能容量优化配置[J]. 中国电力, 2023, 56(12): 147-155, 163. |
[11] | 曹新慧, 车勇, 司政, 开赛江, 周专, 袁铁江. 广域储能电站定容-选址一体规划[J]. 中国电力, 2022, 55(7): 110-120. |
[12] | 徐衍会, 徐宜佳. 平抑风电波动的混合储能容量配置及控制策略[J]. 中国电力, 2022, 55(6): 186-193. |
[13] | 桑林卫, 卫璇, 许银亮, 孙宏斌. 抽水蓄能助力风光稳定外送的最佳配置策略[J]. 中国电力, 2022, 55(12): 86-90,123. |
[14] | 陈崇德, 郭强, 宋子秋, 胡阳. 计及碳收益的风电场混合储能容量优化配置[J]. 中国电力, 2022, 55(12): 22-33. |
[15] | 蒋从伟, 欧庆和, 吴仲超, 张健, 杨澍, 朱佳男, 艾芊. 基于联盟博弈的多微网共享储能联合配置与优化[J]. 中国电力, 2022, 55(12): 11-21. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||