中国电力 ›› 2024, Vol. 57 ›› Issue (2): 34-40.DOI: 10.11930/j.issn.1004-9649.202311091

• 新型电力系统低碳规划与运行 • 上一篇    下一篇

基于VMD-SAST的电能质量扰动分类识别方法

张博智(), 张茹, 焦东翔, 王龙宇, 周一凡, 周丽霞   

  1. 1. 国网冀北电力有限公司计量中心,北京 100032
  • 收稿日期:2023-11-20 出版日期:2024-02-28 发布日期:2024-02-28
  • 作者简介:张博智(1989—),男,通信作者,硕士,高级工程师,从事电力营销技术研究,E-mail:930318153@qq.com
  • 基金资助:
    国家电网有限公司科技项目(5400-202319222A-1-1-ZN)。

Power Quality Disturbance Identification Method Based on VMD-SAST

Bozhi ZHANG(), Ru ZHANG, Dongxiang JIAO, Longyu WANG, Yifan ZHOU, Lixia ZHOU   

  1. 1. State Grid Jibei Electric Power Co., Ltd. Metering Center, Beijing 100032, China
  • Received:2023-11-20 Online:2024-02-28 Published:2024-02-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC(No.5400-202319222A-1-1-ZN).

摘要:

新能源大规模并网以及电力电子设备广泛应用引起的复杂电能质量扰动(power quality disturbances,PQDs)会威胁电力系统的安全稳定运行。针对复杂PQDs难以精准检测识别的问题,提出了一种基于变分模态分解(variational mode decomposition,VMD)与同步压缩自适应S变换(synchrosqueezing adaptive S-transform,SAST)的PQDs检测识别方法。首先,使用VMD将PQDs信号分解为多个模态分量,每个分量只保留局部扰动特征,降低PQDs信号的复杂度;其次,提取一种SAST时频分析方法,改善时频分辨率,集中频谱中的能量分布,提高对PQDs信号的检测精度;最后,基于VMD-SAST提取扰动特征,利用3种不同算法实现对PQDs信号的分类识别。通过仿真分析表明:所提出的方法具有较高的PQDs分类识别精度、较高的适用性和较强的抗噪声能力。

关键词: 电能质量扰动, 变分模态分解, 特征提取, 机器学习

Abstract:

Complex power quality disturbances (PQDs) caused by large-scale grid-connection of renewable energy and wide application of power electronic equipment will threaten the safe and stable operation of power system. Aiming at the difficulty of accurate detection and recognition of complex PQDs, a PQDs detection and recognition method based on variational mode decomposition (VMD) and synchrosqueezing adaptive S-transform (SAST) is proposed. Firstly, the VMD is used to PQDs signals into multiple modal components, with each component only preserving local disturbance features so as to reduce the complexity of PQDs signals. Secondly, a SAST time-frequency analysis method is proposed to improve the time-frequency resolution, concentrate the energy distribution in the spectrum and improve the detection accuracy of PQDs signals. Finally, the disturbance features are extracted based on VMD-SAST, and the PQDs signals are classified and recognized by 3 algorithms respectively. The simulation results show that the proposed method has high PQDs classification and recognition accuracy, high applicability and strong anti-noise ability.

Key words: power quality disturbances, variational mode decomposition, feature extraction, machine learning