中国电力 ›› 2023, Vol. 56 ›› Issue (10): 106-114.DOI: 10.11930/j.issn.1004-9649.202303035
• 风电机组及场站主动支撑与运行控制监测关键技术 • 上一篇 下一篇
吴宇辉1(), 张扬帆1, 高峰2, 王玙1, 王耀函1, 杨伟新1, 张鸿2
收稿日期:
2023-03-07
出版日期:
2023-10-28
发布日期:
2023-10-31
作者简介:
吴宇辉(1974—),男,硕士,高级工程师,从事新能源发电及高压绝缘技术研究,E-mail: elctr@163.com
基金资助:
Yuhui WU1(), Yangfan ZHANG1, Feng GAO2, Yu WANG1, Yaohan WANG1, Weixin YANG1, Hong ZHANG2
Received:
2023-03-07
Online:
2023-10-28
Published:
2023-10-31
Supported by:
摘要:
针对风电机组叶片裂纹损伤发生概率高且难以发现的问题,通过叶片振动信号采集与分析来进行叶片裂纹损伤的在线监测。首先,基于工作模态分析理论构建了基于传递率的叶片模态参数在线识别方法,并搭建叶片振动物理实验台用于该方法的实验验证,通过与传统力锤激振法的实验结果对比,验证了该模态参数识别方法的准确性;然后,以某5 MW风电机组作为仿真算例,进行了叶片裂纹损伤故障仿真,并通过工作模态分析获取了损伤故障特征;最后,将叶片振动信号、模态参数和机组运行数据融合为多源数据集,结合LightGBM算法进行了叶片裂纹损伤故障诊断,诊断结果表明:LightGBM算法较常规机器学习算法能够取得更好的诊断效果,而且在数据集中融入叶片模态参数可明显增加诊断算法的准确率,从而提高叶片裂纹损伤的在线监测准确性。
吴宇辉, 张扬帆, 高峰, 王玙, 王耀函, 杨伟新, 张鸿. 基于工作模态分析的风电机组叶片裂纹损伤在线监测研究[J]. 中国电力, 2023, 56(10): 106-114.
Yuhui WU, Yangfan ZHANG, Feng GAO, Yu WANG, Yaohan WANG, Weixin YANG, Hong ZHANG. Research on Online Monitoring of Crack Damage of Wind Turbine Blades Based on Working Modal Analysis[J]. Electric Power, 2023, 56(10): 106-114.
模态 | 传递率法 | 力锤法 | ||||||
频率/Hz | 阻尼比/% | 频率/Hz | 阻尼比/% | |||||
一阶模态 | 7.69 | 2.00 | 7.56 | 3.76 | ||||
二阶模态 | 16.92 | 1.32 | 17.71 | 1.49 | ||||
三阶模态 | 33.74 | 0.79 | 35.36 | 0.76 | ||||
四阶模态 | 48.38 | 0.28 | 48.35 | 0.30 | ||||
五阶模态 | 52.00 | 0.33 | 52.43 | 0.50 | ||||
六阶模态 | 67.25 | 0.29 | 66.26 | 0.40 |
表 1 模态参数识别结果对比表
Table 1 Comparison of modal parameter identification results
模态 | 传递率法 | 力锤法 | ||||||
频率/Hz | 阻尼比/% | 频率/Hz | 阻尼比/% | |||||
一阶模态 | 7.69 | 2.00 | 7.56 | 3.76 | ||||
二阶模态 | 16.92 | 1.32 | 17.71 | 1.49 | ||||
三阶模态 | 33.74 | 0.79 | 35.36 | 0.76 | ||||
四阶模态 | 48.38 | 0.28 | 48.35 | 0.30 | ||||
五阶模态 | 52.00 | 0.33 | 52.43 | 0.50 | ||||
六阶模态 | 67.25 | 0.29 | 66.26 | 0.40 |
损伤程度 | 质量/kg | 刚度/(N·m2) | 阻尼/% | 厚度/m | 弦长/m | |||||
未损伤 | 1867.46 | 摆振:7.229×109 挥舞:1.022×1010 | 0.477465 | 4.167 | 4.167 | |||||
轻微损伤 | 1867.46 | 摆振:6.506×109 挥舞:9.198×109 | 0.477465 | 4.167 | 4.167 | |||||
严重损伤 | 1867.46 | 摆振:4.379×109 挥舞:6.132×109 | 0.477465 | 4.167 | 4.167 |
表 2 叶片第二单元裂纹损伤前后参数对比
Table 2 Comparison of blade unit 2 parameters before and after blade damage
损伤程度 | 质量/kg | 刚度/(N·m2) | 阻尼/% | 厚度/m | 弦长/m | |||||
未损伤 | 1867.46 | 摆振:7.229×109 挥舞:1.022×1010 | 0.477465 | 4.167 | 4.167 | |||||
轻微损伤 | 1867.46 | 摆振:6.506×109 挥舞:9.198×109 | 0.477465 | 4.167 | 4.167 | |||||
严重损伤 | 1867.46 | 摆振:4.379×109 挥舞:6.132×109 | 0.477465 | 4.167 | 4.167 |
是否损伤 | 功率标准差 | 转速标准差 | 加速度标准差 | 位移标准差 | ||||
未损伤 | 1.4782 | 21.6566 | 0.2804 | 0.4503 | ||||
损伤 | 1.4805 | 21.6661 | 0.2837 | 0.4816 |
表 3 损伤前后各参数标准差对比
Table 3 Comparison of standard deviation of parameters before and after blade damage
是否损伤 | 功率标准差 | 转速标准差 | 加速度标准差 | 位移标准差 | ||||
未损伤 | 1.4782 | 21.6566 | 0.2804 | 0.4503 | ||||
损伤 | 1.4805 | 21.6661 | 0.2837 | 0.4816 |
是否损伤 | 一阶模态 | 二阶模态 | 三阶模态 | |||||||||||||||
频率/Hz | 阻尼比/% | 振型系数 | 频率/Hz | 阻尼比/% | 振型系数 | 频率/Hz | 阻尼比/% | 振型系数 | ||||||||||
未损伤 | 0.0446 | 42.6378 | –0.7404 | 1.7468 | 23.2733 | 12.0225 | 2.3003 | 6.1306 | 1.9180 | |||||||||
损伤 | 0.0375 | 40.7837 | –0.7404 | 1.2910 | 39.0945 | –0.0119 | 2.3611 | 24.9857 | –0.0054 |
表 4 损伤前后低阶模态参数对比
Table 4 Comparison of low-order modal parameters before and after blade damage
是否损伤 | 一阶模态 | 二阶模态 | 三阶模态 | |||||||||||||||
频率/Hz | 阻尼比/% | 振型系数 | 频率/Hz | 阻尼比/% | 振型系数 | 频率/Hz | 阻尼比/% | 振型系数 | ||||||||||
未损伤 | 0.0446 | 42.6378 | –0.7404 | 1.7468 | 23.2733 | 12.0225 | 2.3003 | 6.1306 | 1.9180 | |||||||||
损伤 | 0.0375 | 40.7837 | –0.7404 | 1.2910 | 39.0945 | –0.0119 | 2.3611 | 24.9857 | –0.0054 |
桨距角/(°) | 频率/Hz | 阻尼比/% | 振型系数 | |||
2.5 | 0.0446 | 42.6378 | –0.7404 | |||
5.6 | 0.0448 | 42.6077 | –0.7387 | |||
7.8 | 0.0483 | 42.5235 | –0.6360 | |||
9.7 | 0.0486 | 42.3018 | –0.5432 | |||
11.3 | 0.0487 | 41.9677 | –0.5315 | |||
12.8 | 0.0488 | 41.8823 | –0.5424 | |||
14.2 | 0.0588 | 41.6375 | –0.4406 |
表 5 不同桨距角时的一阶模态参数表
Table 5 Table of first-order modal parameters at different pitch angles
桨距角/(°) | 频率/Hz | 阻尼比/% | 振型系数 | |||
2.5 | 0.0446 | 42.6378 | –0.7404 | |||
5.6 | 0.0448 | 42.6077 | –0.7387 | |||
7.8 | 0.0483 | 42.5235 | –0.6360 | |||
9.7 | 0.0486 | 42.3018 | –0.5432 | |||
11.3 | 0.0487 | 41.9677 | –0.5315 | |||
12.8 | 0.0488 | 41.8823 | –0.5424 | |||
14.2 | 0.0588 | 41.6375 | –0.4406 |
数据集 | 包含数据 | |
1 | 机组运行参数 | |
2 | 叶片振动加速度 | |
3 | 叶片模态参数 | |
4 | 机组运行参数、叶片振动加速度 | |
5 | 机组运行参数、叶片模态参数 | |
6 | 机组运行参数、叶片振动加速度、叶片模态参数 |
表 6 不同数据集数据类型
Table 6 Data types of different data sets
数据集 | 包含数据 | |
1 | 机组运行参数 | |
2 | 叶片振动加速度 | |
3 | 叶片模态参数 | |
4 | 机组运行参数、叶片振动加速度 | |
5 | 机组运行参数、叶片模态参数 | |
6 | 机组运行参数、叶片振动加速度、叶片模态参数 |
数据集 | 不同模型准确率/% | |||||||||
SVM | DT | RF | LightGBM | |||||||
1 | 训练集 | 49.74 | 64.01 | 82.00 | 83.98 | |||||
测试集 | 49.02 | 53.32 | 59.18 | 60.22 | ||||||
2 | 训练集 | 50.06 | 68.03 | 74.87 | 73.00 | |||||
测试集 | 48.24 | 51.30 | 50.78 | 56.12 | ||||||
3 | 训练集 | 50.52 | 86.00 | 92.00 | 92.97 | |||||
测试集 | 49.15 | 83.98 | 88.54 | 89.06 | ||||||
4 | 训练集 | 94.99 | 92.70 | 96.00 | 98.99 | |||||
测试集 | 93.42 | 90.25 | 93.75 | 97.98 | ||||||
5 | 训练集 | 97.00 | 96.12 | 98.00 | 100.00 | |||||
测试集 | 94.73 | 95.99 | 97.66 | 100.00 | ||||||
6 | 训练集 | 100.00 | 98.04 | 99.00 | 100.00 | |||||
测试集 | 99.41 | 97.65 | 98.89 | 100.00 |
表 7 不同分类模型与数据集的诊断结果
Table 7 Recognition results of different data sets under different classification models
数据集 | 不同模型准确率/% | |||||||||
SVM | DT | RF | LightGBM | |||||||
1 | 训练集 | 49.74 | 64.01 | 82.00 | 83.98 | |||||
测试集 | 49.02 | 53.32 | 59.18 | 60.22 | ||||||
2 | 训练集 | 50.06 | 68.03 | 74.87 | 73.00 | |||||
测试集 | 48.24 | 51.30 | 50.78 | 56.12 | ||||||
3 | 训练集 | 50.52 | 86.00 | 92.00 | 92.97 | |||||
测试集 | 49.15 | 83.98 | 88.54 | 89.06 | ||||||
4 | 训练集 | 94.99 | 92.70 | 96.00 | 98.99 | |||||
测试集 | 93.42 | 90.25 | 93.75 | 97.98 | ||||||
5 | 训练集 | 97.00 | 96.12 | 98.00 | 100.00 | |||||
测试集 | 94.73 | 95.99 | 97.66 | 100.00 | ||||||
6 | 训练集 | 100.00 | 98.04 | 99.00 | 100.00 | |||||
测试集 | 99.41 | 97.65 | 98.89 | 100.00 |
1 | YANG X Y, ZHANG Y F, LV W, et al. Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier[J]. Renewable Energy, 2021, 163, 386- 397. |
2 | 王雪平, 张建斐, 李万润, 等. 基于机器视觉的风电叶片风沙侵蚀程度检测方法研究[J]. 太阳能学报, 2020, 41 (5): 166- 173. |
WANG Xueping, ZHANG Jianfei, LI Wanrun, et al. Study on monitoring method of wind power blades erosion severity under wind-sand storm based on machine vision technology[J]. Acta Energiae Solaris Sinica, 2020, 41 (5): 166- 173. | |
3 |
赵肖懿, 董朝轶, 周鹏, 等. 基于无人机机器视觉的风力机叶片损伤诊断研究[J]. 太阳能学报, 2021, 42 (7): 390- 397.
DOI |
ZHAO Xiaoyi, DONG Chaoyi, ZHOU Peng, et al. Diagnosis of wind power generator blade damage based on unmanned aerial vehicle machine vision[J]. Acta Energiae Solaris Sinica, 2021, 42 (7): 390- 397.
DOI |
|
4 | 吴晓伦. 基于深度学习的大型风电机组叶片表面损伤边云协同检测架构及方法研究[D]. 北京: 华北电力大学, 2021. |
WU Xiaolun. Research on collaborative detection framework and method of edge cloud for blade surface damage of large wind turbine based on deep learning[D]. Beijing: North China Electric Power University, 2021. | |
5 | CHEN B, YU S, YU Y, et al. Acoustical damage detection of wind turbine blade using the improved incremental support vector data description[J]. Renewable Energy, 2020, 156, 548- 557. |
6 |
BEALE C, NIEZRECKI C, INALPOLAT M. An adaptive wavelet packet denoising algorithm for enhanced active acoustic damage detection from wind turbine blades[J]. Mechanical Systems and Signal Processing, 2020, 142, 106754.
DOI |
7 |
XU D, LIU P F, CHEN Z P. Damage mode identification and singular signal detection of composite wind turbine blade using acoustic emission[J]. Composite Structures, 2021, 255, 112954.
DOI |
8 |
ZHANG Y N, AVALLONE F, WATSON S. Wind turbine blade trailing edge crack detection based on airfoil aerodynamic noise: an experimental study[J]. Applied Acoustics, 2022, 191, 108668.
DOI |
9 | 张亚楠. 基于声发射信号处理的风力机叶片损伤演化研究[D]. 沈阳: 沈阳工业大学, 2020. |
ZHANG Yanan. Study on damage evolution of wind turbine blades based on acoustic emission signal processing[D]. Shenyang: Shenyang University of Technology, 2020. | |
10 | OH K Y, PARK J Y, LEE J S, et al. A novel method and its field tests for monitoring and diagnosing blade health for wind turbines[J]. IEEE Transactions on Instrumentation and Measurement, 2015, 64 (6): 1726- 1733. |
11 |
SIERRA-PÉREZ J, TORRES-ARREDONDO M A, GÜEMES A. Damage and nonlinearities detection in wind turbine blades based on strain field pattern recognition. FBGs, OBR and strain gauges comparison[J]. Composite Structures, 2016, 135, 156- 166.
DOI |
12 |
DOWNEY A, UBERTINI F, LAFLAMME S. Algorithm for damage detection in wind turbine blades using a hybrid dense sensor network with feature level data fusion[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2017, 168, 288- 296.
DOI |
13 |
GARCÍA D, TCHERNIAK D. An experimental study on the data-driven structural health monitoring of large wind turbine blades using a single accelerometer and actuator[J]. Mechanical Systems and Signal Processing, 2019, 127, 102- 119.
DOI |
14 |
TCHERNIAK D, MØLGAARD L L. Active vibration-based structural health monitoring system for wind turbine blade: demonstration on an operating Vestas V27 wind turbine[J]. Structural Health Monitoring:an International Journal, 2017, 16 (5): 536- 550.
DOI |
15 |
JOSHUVA A, SUGUMARAN V. A data driven approach for condition monitoring of wind turbine blade using vibration signals through best-first tree algorithm and functional trees algorithm: a comparative study[J]. ISA Transactions, 2017, 67, 160- 172.
DOI |
16 |
JIANG S C, LIN P, CHEN Y M, et al. Mixed-signal extraction and recognition of wind turbine blade multiple-area damage based on improved Fast-ICA[J]. Optik, 2019, 179, 1152- 1159.
DOI |
17 |
LEE K, AIHARA A, PUNTSAGDASH G, et al. Feasibility study on a strain based deflection monitoring system for wind turbine blades[J]. Mechanical Systems and Signal Processing, 2017, 82, 117- 129.
DOI |
18 |
DONG X F, LIAN J J, WANG H J, et al. Structural vibration monitoring and operational modal analysis of offshore wind turbine structure[J]. Ocean Engineering, 2018, 150, 280- 297.
DOI |
19 |
JARAMILLO F, GUTIÉRREZ J M, ORCHARD M, et al. A Bayesian approach for fatigue damage diagnosis and prognosis of wind turbine blades[J]. Mechanical Systems and Signal Processing, 2022, 174, 109067.
DOI |
20 |
PACHECO-CHÉRREZ J, PROBST O. Vibration-based damage detection in a wind turbine blade through operational modal analysis under wind excitation[J]. Materials Today:Proceedings, 2022, 56, 291- 297.
DOI |
21 |
MOVSESSIAN A, GARCÍA CAVA D, TCHERNIAK D. An artificial neural network methodology for damage detection: demonstration on an operating wind turbine blade[J]. Mechanical Systems and Signal Processing, 2021, 159, 107766.
DOI |
22 | 张鑫. 深度学习在风机叶片结构损伤识别中的仿真研究[D]. 兰州: 兰州交通大学, 2016. |
ZHANG Xin. Simulation research on deep learning in wind trbine blade structural damage identification[D]. Lanzhou: Lanzhou Jiatong University, 2016. | |
23 | 李芒芒. 风力机叶片机械损伤动态监测方法与技术研究[D]. 长沙: 长沙理工大学, 2012. |
LI Mangmang. Research on dynamic monitoring method and technology of mechanical damage of wind turbine blades[D]. Changsha: Changsha University of Science & Technology, 2012. | |
24 | 李孟珠, 刘纲, 黎华, 等. 大型风力机叶片状态监测方法研究进展[J]. 热力发电, 2022, 51 (12): 18- 29. |
LI Mengzhu, LIU Gang, LI Hua, et al. Research progress of blade condition monitoring methods for large wind turbines[J]. Thermal Power Generation, 2022, 51 (12): 18- 29. | |
25 | 廖礼. 风力机叶片模态分析及应用[D]. 北京: 华北电力大学, 2021. |
LIAO Li. Modal analysis and application of wind turbine blades[D]. Beijing: North China Electric Power University, 2021. |
[1] | 高志远, 庄卫金, 李峰, 于芳, 张鸿, 王艳, 夏旻. 调控领域人工智能应用的高复用性验证平台[J]. 中国电力, 2025, 58(3): 142-150. |
[2] | 李丹, 秦世耀, 李少林, 贺敬. 基于混沌粒子群的双馈风电机组LVRT实测建模及暂态参数辨识[J]. 中国电力, 2024, 57(8): 75-84. |
[3] | 张博智, 张茹, 焦东翔, 王龙宇, 周一凡, 周丽霞. 基于VMD-SAST的电能质量扰动分类识别方法[J]. 中国电力, 2024, 57(2): 34-40. |
[4] | 赵晶晶, 杜明, 刘帅, 李梓博, 马闻鹤. 基于模型预测控制的双馈风电机组调频与转子转速恢复策略[J]. 中国电力, 2023, 56(6): 11-17. |
[5] | 杨晓峰, 方逸航, 赵鹏臻, 王承民, 谢宁. 基于K-means和BPNN的风机状态识别[J]. 中国电力, 2023, 56(6): 158-166,175. |
[6] | 柳守诚, 王淳, 邹智辉, 陈佳慧, 周晗, 刘伟, 张旭. 基于t-SNE降维和放射传播聚类算法的低压配电网相位识别[J]. 中国电力, 2023, 56(5): 108-117. |
[7] | 李博浩, 郭昆丽, 吕家君, 蔡维正, 刘璐豪, 刘凤仪, 郝翊帆. 弱电网下改进LADRC抑制直驱风机次同步振荡研究[J]. 中国电力, 2023, 56(4): 56-67. |
[8] | 李冰, 白云山, 赵宽, 郭聪彬, 翟永杰. 基于HSCA-YOLOv7的风电机组叶片表面缺陷检测算法[J]. 中国电力, 2023, 56(10): 43-52. |
[9] | 马海飞, 滕伟, 彭迪康, 柳亦兵, 靳涛. 基于DRS与改进Autogram的风电齿轮箱复合故障特征提取[J]. 中国电力, 2023, 56(10): 71-79. |
[10] | 王磊, 柳亦兵, 滕伟, 黄心伟, 刘剑韬. 风电机组叶片无损检测技术研究与进展[J]. 中国电力, 2023, 56(10): 80-95. |
[11] | 王宇航, 王文玲, 周绪红, 王康, 罗崯滔. 海上风电机组格构式浮式基础结构优化及响应分析[J]. 中国电力, 2022, 55(5): 21-31. |
[12] | 戴璐平, 瞿青, 黄露, 潘晔. 基于配网新形态下电费风险模型构建与应用[J]. 中国电力, 2021, 54(8): 98-102. |
[13] | 滕伟, 黄乙珂, 吴仕明, 柳亦兵. 基于XGBoost与LSTM的风力发电机绕组温度预测[J]. 中国电力, 2021, 54(6): 95-103. |
[14] | 杨蕾, 王智超, 周鑫, 李胜男, 和鹏, 向川, 张杰, 王德林. 大规模双馈风电机组并网频率稳定控制策略[J]. 中国电力, 2021, 54(5): 186-194. |
[15] | 唐英杰, 张哲任, 徐政. 基于二极管不控整流单元的远海风电低频交流送出方案[J]. 中国电力, 2020, 53(7): 44-54,168. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||