中国电力 ›› 2023, Vol. 56 ›› Issue (10): 106-114.DOI: 10.11930/j.issn.1004-9649.202303035

• 风电机组及场站主动支撑与运行控制监测关键技术 • 上一篇    下一篇

基于工作模态分析的风电机组叶片裂纹损伤在线监测研究

吴宇辉1(), 张扬帆1, 高峰2, 王玙1, 王耀函1, 杨伟新1, 张鸿2   

  1. 1. 华北电力科学研究院有限责任公司,北京 100089
    2. 华北电力大学,北京 102206
  • 收稿日期:2023-03-07 出版日期:2023-10-28 发布日期:2023-10-31
  • 作者简介:吴宇辉(1974—),男,硕士,高级工程师,从事新能源发电及高压绝缘技术研究,E-mail: elctr@163.com
  • 基金资助:
    华北电力科学研究院自有资金项目(KJZ2022059)。

Research on Online Monitoring of Crack Damage of Wind Turbine Blades Based on Working Modal Analysis

Yuhui WU1(), Yangfan ZHANG1, Feng GAO2, Yu WANG1, Yaohan WANG1, Weixin YANG1, Hong ZHANG2   

  1. 1. North China Electric Power Research Institute Co., Ltd., Beijing 100089, China
    2. North China Electric Power University, Beijing 102206, China
  • Received:2023-03-07 Online:2023-10-28 Published:2023-10-31
  • Supported by:
    This work is supported by Self-funded Project of North China Electric Power Research Institute (No.KJZ2022059).

摘要:

针对风电机组叶片裂纹损伤发生概率高且难以发现的问题,通过叶片振动信号采集与分析来进行叶片裂纹损伤的在线监测。首先,基于工作模态分析理论构建了基于传递率的叶片模态参数在线识别方法,并搭建叶片振动物理实验台用于该方法的实验验证,通过与传统力锤激振法的实验结果对比,验证了该模态参数识别方法的准确性;然后,以某5 MW风电机组作为仿真算例,进行了叶片裂纹损伤故障仿真,并通过工作模态分析获取了损伤故障特征;最后,将叶片振动信号、模态参数和机组运行数据融合为多源数据集,结合LightGBM算法进行了叶片裂纹损伤故障诊断,诊断结果表明:LightGBM算法较常规机器学习算法能够取得更好的诊断效果,而且在数据集中融入叶片模态参数可明显增加诊断算法的准确率,从而提高叶片裂纹损伤的在线监测准确性。

关键词: 风电机组, 叶片裂纹损伤, 工作模态分析, 传递率, 机器学习

Abstract:

Since crack damage of wind turbine (WT) blades is easy to occur and difficult to find, online monitoring of blade crack damage is carried out by collecting and analyzing blade vibration signals. Firstly, based on the theory of working modal analysis, an online identification method of blade modal parameters based on transmissibility is constructed, and a blade vibration physical experiment platform is built for the experimental verification of the method. By comparing the experimental results with the traditional hammer excitation method, the accuracy of the method is verified. Then, with a 5 MW WT as an example, the blade crack damage fault is simulated, and the damage fault characteristics are obtained through working modal analysis. Finally, blade vibration signals, modal parameters, and WT operation data are fused into multi-source data sets, and blade crack damage fault diagnosis is performed based on the LightGBM algorithm. The diagnosis results show that the LightGBM algorithm can achieve a better diagnosis effect than the conventional machine learning algorithm, and the accuracy of the diagnosis algorithm can be significantly increased by integrating blade modal parameters into the data set, so as to improve the accuracy of online monitoring of blade crack damage.

Key words: wind turbine, blade crack damage, working modal analysis, transmissibility, machine learning