[1] 谢小荣, 李浩志. 电力系统振荡研究进展[J]. 科学通报, 2020, 65(12): 1119–1129 XIE Xiaorong, LI Haozhi. Advances on power system oscillation[J]. Chinese Science Bulletin, 2020, 65(12): 1119–1129 [2] 杨秀, 胡浩然, 李增尧, 等. 风电场交直流并网次/超同步振荡交互影响[J]. 电力建设, 2022, 43(1): 49–62 YANG Xiu, HU Haoran, LI Zengyao, et al. Interaction between AC and DC grid-connected sub-synchronous and super-synchronous oscillations in wind farms[J]. Electric Power Construction, 2022, 43(1): 49–62 [3] LIU H, BI T S, CHANG X Q, et al. Impacts of subsynchronous and supersynchronous frequency components on synchrophasor measurements[J]. Journal of Modern Power Systems and Clean Energy, 2016, 4(3): 362–369. [4] 赵伟哲, 崔成, 严干贵, 等. 用于次同步振荡分析的直驱风电场等值模型[J]. 智慧电力, 2022, 50(2): 22–28, 68 ZHAO Weizhe, CUI Cheng, YAN Gangui, et al. Equivalent model of D-PMSG-based wind farm for subsynchronous oscillation analysis[J]. Smart Power, 2022, 50(2): 22–28, 68 [5] HUANG B Y, SUN H S, LIU Y M, et al. Study on subsynchronous oscillation in D-PMSGs-based wind farm integrated to power system[J]. IET Renewable Power Generation, 2019, 13(1): 16–26. [6] 陈晨, 杜文娟, 王海风. 风电场接入引发电力系统次同步振荡机理综述[J]. 南方电网技术, 2018, 12(1): 84–93 CHEN Chen, DU Wenjuan, WANG Haifeng. Review on mechanism of sub-synchronous oscillations caused by grid-connected wind farms in power systems[J]. Southern Power System Technology, 2018, 12(1): 84–93 [7] 肖湘宁, 罗超, 廖坤玉. 新能源电力系统次同步振荡问题研究综述[J]. 电工技术学报, 2017, 32(6): 85–97 XIAO Xiangning, LUO Chao, LIAO Kunyu. Review of the research on subsynchronous oscillation issues in electric power system with renewable energy sources[J]. Transactions of China Electrotechnical Society, 2017, 32(6): 85–97 [8] LIU H K, XIE X R, HE J B, et al. Subsynchronous interaction between direct-drive PMSG based wind farms and weak AC networks[J]. IEEE Transactions on Power Systems, 2017, 32(6): 4708–4720. [9] 刘子瑜, 王西田, 解大. 次同步振荡功率的传播特性及计算方法[J]. 南方电网技术, 2022, 16(7): 108–115 LIU Ziyu, WANG Xitian, XIE Da. Propagation Characteristics and calculation algorithm of subsynchronous oscillation power[J]. Southern Power System Technology, 2022, 16(7): 108–115 [10] MOHAMMADPOUR H A, SANTI E. SSR damping controller design and optimal placement in rotor-side and grid-side converters of series-compensated DFIG-based wind farm[J]. IEEE Transactions on Sustainable Energy, 2015, 6(2): 388–399. [11] PILOTTO L A S, LONG W F, EDRIS A A. Basic mechanisms of control interactions among power electronic-assisted power systems[C]//2001 IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives (Cat. No. 01 CH37294). Atlanta, GA, USA. IEEE, 2002: 397–402. [12] 黄碧月, 陈雅皓, 孙海顺, 等. 考虑静止无功补偿器的直驱风电并网系统次同步振荡[J]. 清华大学学报(自然科学版), 2021, 61(5): 446–456 HUANG Biyue, CHEN Yahao, SUN Haishun, et al. Sub-synchronous oscillation in wind farm integrated power system considering static var compensator[J]. Journal of Tsinghua University (Science and Technology), 2021, 61(5): 446–456 [13] 杨蕾, 甘维公, 李胜男, 等. DFIG风电机组协同SVG抑制电网低频振荡方法[J]. 中国电力, 2020, 53(11): 175–184, 201 YANG Lei, GAN Weigong, LI Shengnan, et al. Method of DFIG cooperating with SVG to suppress low-frequency oscillation in power systems[J]. Electric Power, 2020, 53(11): 175–184, 201 [14] 顾威, 李兴源, 陈建国, 等. 基于瞬时无功理论的SVC抑制次同步振荡的附加控制设计[J]. 电力系统保护与控制, 2015, 43(5): 107–111 GU Wei, LI Xingyuan, CHEN Jianguo, et al. Additional control design of SVC for mitigating subsynchronous oscillation based on instantaneous reactive power theory[J]. Power System Protection and Control, 2015, 43(5): 107–111 [15] 毛俞杰, 孙海顺, 韩应生, 等. 采用STATCOM抑制多机系统次同步振荡的理论与仿真[J]. 电力系统保护与控制, 2022, 50(6): 23–32 MAO Yujie, SUN Haishun, HAN Yingsheng, et al. Theory and simulation of STATCOM for damping subsynchronous oscillation of a multi-machine system[J]. Power System Protection and Control, 2022, 50(6): 23–32 [16] 谢小荣, 刘华坤, 贺静波, 等. 直驱风机风电场与交流电网相互作用引发次同步振荡的机理与特性分析[J]. 中国电机工程学报, 2016, 36(9): 2366–2372 XIE Xiaorong, LIU Huakun, HE Jingbo, et al. Mechanism and characteristics of subsynchronous oscillation caused by the interaction between full-converter wind turbines and AC systems[J]. Proceedings of the CSEE, 2016, 36(9): 2366–2372 [17] IRWIN G D, JINDAL A K, ISAACS A L. Sub-synchronous control interactions between type 3 wind turbines and series compensated AC transmission systems[C]//2011 IEEE Power and Energy Society General Meeting. Detroit, MI, USA. IEEE, 2011: 1–6. [18] 张冲, 王伟胜, 何国庆, 等. 基于序阻抗的直驱风电场次同步振荡分析与锁相环参数优化设计[J]. 中国电机工程学报, 2017, 37(23): 6757–6767, 7067 ZHANG Chong, WANG Weisheng, HE Guoqing, et al. Analysis of sub-synchronous oscillation of full-converter wind farm based on sequence impedance and an optimized design method for PLL parameters[J]. Proceedings of the CSEE, 2017, 37(23): 6757–6767, 7067 [19] 万玉良, 朱玲, 项颂, 等. 直驱风电机组与弱电网交互作用稳定分析[J]. 中国电力, 2019, 52(9): 118–125 WAN Yuliang, ZHU Ling, XIANG Song, et al. Interactive stability analysis between direct-drive wind turbines and weak power system[J]. Electric Power, 2019, 52(9): 118–125 [20] 毕悦, 刘天琪, 赵磊, 等. 风火打捆外送系统次同步振荡的改进自抗扰直流附加阻尼控制[J]. 电力自动化设备, 2018, 38(11): 174–180 BI Yue, LIU Tianqi, ZHAO Lei, et al. DC additional damping control of subsynchronous oscillation based on improved active disturbance rejection control for wind-thermal-bundled power system[J]. Electric Power Automation Equipment, 2018, 38(11): 174–180 [21] 高本锋, 易友川, 邵冰冰, 等. 基于自抗扰控制的直驱风电场次同步振荡抑制策略[J]. 电力自动化设备, 2020, 40(9): 148–157 GAO Benfeng, YI Youchuan, SHAO Bingbing, et al. Subsynchronous oscillation mitigation strategy based on ADRC for D-PMSGs based wind farm[J]. Electric Power Automation Equipment, 2020, 40(9): 148–157 [22] 高本锋, 胡韵婷, 李忍, 等. 基于自抗扰控制的双馈风机次同步控制相互作用抑制策略研究[J]. 电网技术, 2019, 43(2): 655–664 GAO Benfeng, HU Yunting, LI Ren, et al. Research on subsynchronous control interaction mitigation strategy based on active disturbance rejection control for doubly-fed induction generator[J]. Power System Technology, 2019, 43(2): 655–664 [23] 蔡维正, 郭昆丽, 刘璐雨, 等. 基于一阶LADRC控制的直驱风机次同步振荡抑制策略[J]. 中国电力, 2022, 55(4): 175–184 CAI Weizheng, GUO Kunli, LIU Luyu, et al. Subsynchronous oscillation mitigation strategy based on first-order LADRC for direct-drive wind turbines[J]. Electric Power, 2022, 55(4): 175–184 [24] MA Y J, SUN X T, ZHOU X S. Research on D-STATCOM double closed-loop control method based on improved first-order linear active disturbance rejection technology[J]. Energies, 2020, 13(15): 3958. [25] 陈昱龙. 基于改进自抗扰控制的风电系统并网变流器控制策略研究[D]. 天津: 天津理工大学, 2021. CHEN Yulong. Control strategy of grid-connected converters of wind power system based on improved active disturbance rejection control[D]. Tianjin: Tianjin University of Technology, 2021. [26] 聂飞, 徐海亮, 刘壮壮, 等. 弱电网下三相并网变流系统全线性自抗扰控制及其小干扰稳定性分析[J]. 高电压技术, 2022, 48(1): 199–209 NIE Fei, XU Hailiang, LIU Zhuangzhuang, et al. All LADRC control and small signal stability analysis of three-phase grid-connected converter system under weak AC grid condition[J]. High Voltage Engineering, 2022, 48(1): 199–209 [27] 高本锋, 崔意婵, 邵冰冰, 等. 直驱风电机组全运行区域的次同步振荡特性分析[J]. 电力建设, 2020, 41(2): 85–93 GAO Benfeng, CUI Yichan, SHAO Bingbing, et al. Sub-synchronous oscillation characteristics of direct-drive PMSG under all operation regions when wind farms connected to weak AC system[J]. Electric Power Construction, 2020, 41(2): 85–93 [28] TIAN G, GAO Z Q. Frequency response analysis of active disturbance rejection based control system[C]//2007 IEEE International Conference on Control Applications. Singapore. IEEE, 2007: 1595–1599. [29] 徐衍会, 曹宇平. 直驱风机网侧换流器引发次/超同步振荡机理研究[J]. 电网技术, 2018, 42(5): 1556–1564 XU Yanhui, CAO Yuping. Research on mechanism of sub/sup-synchronous oscillation caused by GSC controller of direct-drive permanent magnetic synchronous generator[J]. Power System Technology, 2018, 42(5): 1556–1564 [30] 李景一, 毕天姝, 于钊, 等. 直驱风机变流控制系统对次同步频率分量的响应机理研究[J]. 电网技术, 2017, 41(6): 1734–1740 LI Jingyi, BI Tianshu, YU Zhao, et al. Study on response characteristics of grid converter control system of permanent magnet synchronous generators(PMSG) to subsynchronous frequency component[J]. Power System Technology, 2017, 41(6): 1734–1740 [31] GUO B L, BACHA S, ALAMIR M, et al. Generalized integrator-extended state observer with applications to grid-connected converters in the presence of disturbances[J]. IEEE Transactions on Control Systems Technology, 2021, 29(2): 744–755. [32] CAO Y F, ZHAO Q S, YE Y Q, et al. ADRC-based current control for grid-tied inverters: design, analysis, and verification[J]. IEEE Transactions on Industrial Electronics, 2020, 67(10): 8428–8437. [33] IEEE guide for planning DC links terminating at AC locations having low short-circuit capacities[J]. IEEE Std 1204-1997, 1997: 1–216. |