中国电力 ›› 2025, Vol. 58 ›› Issue (3): 142-150.DOI: 10.11930/j.issn.1004-9649.202407038
高志远1(), 庄卫金1(
), 李峰1(
), 于芳1(
), 张鸿1(
), 王艳1(
), 夏旻2(
)
收稿日期:
2024-07-05
出版日期:
2025-03-28
发布日期:
2025-03-26
作者简介:
基金资助:
Zhiyuan GAO1(), Weijin ZHUANG1(
), Feng LI1(
), Fang YU1(
), Hong ZHANG1(
), Yan WANG1(
), Min XIA2(
)
Received:
2024-07-05
Online:
2025-03-28
Published:
2025-03-26
Supported by:
摘要:
近年来,电网调控领域智能化发展趋势明显,但由于人工智能(artificial intelligence,AI)技术本身的黑盒性质,正确性和可靠性验证问题日渐重要,能够支持各种不同人工智能模型验证的复用性支持平台尤为重要。通过对验证需求和问题的分析,提出一种包含基础设施、平台服务和应用服务的3层验证平台架构,分析了该架构下AI模型验证的运行模式,开展了案例和样本复用、容器化和镜像、多框架和算法集成等关键技术研究,并进行了开发和实施。该平台实现了算力和数据资源的统一管理和复用、兼容支持多种不同AI框架和算法库、验证场景的动态生成等,为后续调控领域人工智能技术推广应用奠定了基础。
高志远, 庄卫金, 李峰, 于芳, 张鸿, 王艳, 夏旻. 调控领域人工智能应用的高复用性验证平台[J]. 中国电力, 2025, 58(3): 142-150.
Zhiyuan GAO, Weijin ZHUANG, Feng LI, Fang YU, Hong ZHANG, Yan WANG, Min XIA. High Reusability Verification Platform for Artificial Intelligence Applications in Power Grid Dispatching and Control Field[J]. Electric Power, 2025, 58(3): 142-150.
软件名称 | 主要功能 | |
Docker | 应用容器引擎 | |
Kubernetes | 容器编排平台 | |
Robot Framework | 可支持分布式异构环境的自动测试框架 | |
Redis | 可基于内存亦可持久化的数据库 | |
GitLab | 版本控制和项目管理工具 | |
Pytorch | Facebook开发的深度学习框架 | |
Tensorflow | Google开发的深度学习框架 |
表 1 典型开源软件
Table 1 Typical open source software
软件名称 | 主要功能 | |
Docker | 应用容器引擎 | |
Kubernetes | 容器编排平台 | |
Robot Framework | 可支持分布式异构环境的自动测试框架 | |
Redis | 可基于内存亦可持久化的数据库 | |
GitLab | 版本控制和项目管理工具 | |
Pytorch | Facebook开发的深度学习框架 | |
Tensorflow | Google开发的深度学习框架 |
层级 | 接口名称 | 内容说明 | ||
应用级 | 在线标准规约 | IEC 60870-5-103、104规约等 | ||
独立文件 | 共享文件 | |||
数据库数据 | 互斥读写的数据库数据 | |||
平台级 | 容器间通信 | Docker自带通信机制或者第三方插件 |
表 2 可选系统/模块间交互方式
Table 2 Optional system/module interaction methods
层级 | 接口名称 | 内容说明 | ||
应用级 | 在线标准规约 | IEC 60870-5-103、104规约等 | ||
独立文件 | 共享文件 | |||
数据库数据 | 互斥读写的数据库数据 | |||
平台级 | 容器间通信 | Docker自带通信机制或者第三方插件 |
1 | 陶洪铸, 翟明玉, 许洪强, 等. 适应调控领域应用场景的人工智能平台体系架构及关键技术[J]. 电网技术, 2020, 44 (2): 412- 419. |
TAO Hongzhu, ZHAI Mingyu, XU Hongqiang, et al. Architecture and key technologies of artificial intelligence platform oriented for power grid dispatching and control application scenarios[J]. Power System Technology, 2020, 44 (2): 412- 419. | |
2 | 蒲天骄, 韩笑. 新型电力系统中人工智能应用的关键技术[J]. 电力信息与通信技术, 2024, 22 (1): 1- 13. |
PU Tianjiao, HAN Xiao. Research on key technologies in the application of artificial intelligence in new type power systems[J]. Electric Power Information and Communication Technology, 2024, 22 (1): 1- 13. | |
3 | 高志远, 袁浩, 刘强, 等. 基于算法库和灵活组态的电力零售市场模拟推演[J]. 电网技术, 2022, 46 (11): 4200- 4208. |
GAO Zhiyuan, YUAN Hao, LIU Qiang, et al. Simulation of electricity retail market based on algorithm library and flexible configuration[J]. Power System Technology, 2022, 46 (11): 4200- 4208. | |
4 | 李明节, 陶洪铸, 许洪强, 等. 电网调控领域人工智能技术框架与应用展望[J]. 电网技术, 2020, 44 (2): 393- 400. |
LI Mingjie, TAO Hongzhu, XU Hongqiang, et al. The technical framework and application prospect of artificial intelligence application in the field of power grid dispatching and control[J]. Power System Technology, 2020, 44 (2): 393- 400. | |
5 | 李博, 高志远. 人工智能技术在智能电网中的应用分析和展望[J]. 中国电力, 2017, 50 (12): 136- 140. |
LI Bo, GAO Zhiyuan. Analysis and prospect on the application of artificial intelligence technologies in smart grid[J]. Electric Power, 2017, 50 (12): 136- 140. | |
6 |
辛耀中, 石俊杰, 周京阳, 等. 智能电网调度控制系统现状与技术展望[J]. 电力系统自动化, 2015, 39 (1): 2- 8.
DOI |
XIN Yaozhong, SHI Junjie, ZHOU Jingyang, et al. Technology development trends of smart grid dispatching and control systems[J]. Automation of Electric Power Systems, 2015, 39 (1): 2- 8.
DOI |
|
7 | 杨清波, 陈振宇, 刘东, 等. 基于容器的调控云PaaS平台的设计与实现[J]. 电网技术, 2020, 44 (6): 2030- 2037. |
YANG Qingbo, CHEN Zhenyu, LIU Dong, et al. Design and implementation of dispatching and control cloud PaaS platform based on container[J]. Power System Technology, 2020, 44 (6): 2030- 2037. | |
8 | 高冠中, 姚建国, 严嘉豪, 等. 基于多智能体深度强化学习的配-微网协同优化调度研究[J]. 智慧电力, 2024, 52 (9): 80- 87. |
GAO Guanzhong, YAO Jianguo, YAN Jiahao, et al. Collaborative optimization scheduling of distribution network and microgrids based on multi agent deep reinforcement learning[J]. Smart Power, 2024, 52 (9): 80- 87. | |
9 | 赵日晓, 闫冬, 周翔, 等. 人工智能支撑新型电力系统能源供给及消纳[J]. 全球能源互联网, 2023, 6 (2): 186- 195. |
ZHAO Rixiao, YAN Dong, ZHOU Xiang, et al. Artificial intelligence supports energy supply and consumption in new power system[J]. Journal of Global Energy Interconnection, 2023, 6 (2): 186- 195. | |
10 | 吴慧军, 郭超雨, 苏承国, 等. 基于EEMD-GRU-MC的短期风功率组合预测方法[J]. 南方电网技术, 2023, 17 (2): 66- 73. |
WU Huijun , GUO Chaoyu , SU Chengguo , et al. Combined prediction method for short-term wind power based on EEMD-GRU-MC[J]. Southern Power System Technology, 2023, 17 (2): 66- 73. | |
11 | 杨书强, 王涛, 檀晓林, 等. 基于长短期记忆的图像化短期电力负荷预测方法[J]. 全球能源互联网, 2023, 6 (3): 282- 288. |
YANG Shuqiang, WANG Tao, TAN Xiaolin, et al. Image based short-term power load forecasting method using long short-term memory[J]. Journal of Global Energy Interconnection, 2023, 6 (3): 282- 288. | |
12 | 高晗, 蔡国伟, 杨德友, 等. 基于累积贡献率和可解释人工智能的静态电压稳定裕度估计特征量筛选方法[J]. 电力自动化设备, 2023, 43 (4): 168- 176. |
GAO Han, CAI Guowei, YANG Deyou, et al. Feature selection approach based on FCC-eAI in static voltage stability margin estimation[J]. Electric Power Automation Equipment, 2023, 43 (4): 168- 176. | |
13 | 李杰, 李英昊, 张印宝, 等. 基于人工智能的监控信息事件化系统建设研究[J]. 供用电, 2022, 39 (12): 17- 27. |
LI Jie, LI Yinghao, ZHANG Yinbao, et al. Research on the construction of monitoring information event system based on artificial intelligence[J]. Distribution & Utilization, 2022, 39 (12): 17- 27. | |
14 | SUN M Y, KONSTANTELOS I, STRBAC G. A deep learning-based feature extraction framework for system security assessment[J]. IEEE Transactions on Smart Grid, 2018, 10 (5): 5007- 5020. |
15 | 韩保军, 高强, 代飞, 等. 基于协同奖励函数多目标强化学习的智能频率控制策略研究[J]. 电力科学与技术学报, 2023, 38 (2): 18- 29. |
HAN Baojun, GAO Qiang, DAI Fei, et al. Intelligent frequency control strategy based on multi-objective reinforcement learning of cooperative reward function[J]. Journal of Electric Power Science and Technology, 2023, 38 (2): 18- 29. | |
16 | 薛溟枫, 毛晓波, 肖浩, 等. 基于联邦学习的综合能源微网群协同优化运行方法[J]. 中国电力, 2023, 56 (12): 164- 173. |
XUE Mingfeng, MAO Xiaobo, XIAO Hao, et al. Cooperative operation optimization for integrated energy microgrid groups based on federated learning[J]. Electric Power, 2023, 56 (12): 164- 173. | |
17 | XI L, ZHOU L P, LIU L, et al. A deep reinforcement learning algorithm for the power order optimization allocation of AGC in interconnected power grids[J]. CSEE Journal of Power and Energy Systems, 2020, 6 (3): 712- 723. |
18 | 周志华. 机器学习[M]. 北京: 清华大学出版社, 2016. |
19 | 王月春. 人工智能软件测试技术[M]. 北京: 清华大学出版社, 2023. |
20 | 国家电网公司. 智能电网调度技术支持系统 第1部分: 体系架构及总体要求: Q/GDW 1680.1—2014[S]. |
21 | 国家能源局. 智能电网调度控制系统技术规范 第5部分: 调度计划: DL/T 1709.5—2017[S]. 北京: 中国电力出版社, 2017. |
22 |
高志远, 黄海峰, 姚建国, 等. 基于I/O空间分析的调度主站软件系统检测模型[J]. 电力系统自动化, 2014, 38 (22): 91- 96, 102.
DOI |
GAO Zhiyuan, HUANG Haifeng, YAO Jianguo, et al. Testing models for power dispatching automation system based on I/O space analysis[J]. Automation of Electric Power Systems, 2014, 38 (22): 91- 96, 102.
DOI |
|
23 | 鄂志君, 李振斌, 杨帮宇, 等. 交直流混合电网仿真初始化方法[J]. 中国电力, 2022, 55 (8): 178- 183. |
E Zhijun, LI Zhenbin, YANG Bangyu, et al. Simulation initialization method for AC/DC hybrid power grid[J]. Electric Power, 2022, 55 (8): 178- 183. | |
24 | 高恺, 何昊, 谢冰, 等. 开源软件供应链研究综述[J]. 软件学报, 2024, 35 (2): 581- 603. |
GAO Kai, HE Hao, XIE Bing, et al. Survey on open source software supply chains[J]. Journal of Software, 2024, 35 (2): 581- 603. | |
25 | International Electrotechnical Commission. Energy management system application program interface (EMS-API): Part 301 common information model (CIM) base: DS/EN 61970-301—2013[S]. 2013. |
26 | International Electrotechnical Commission. Energy management system application program interface (EMS-API): Part 302 common information model (CIM) dynamic: IEC 61970-302—2018[S]. |
27 | 国家市场监督管理总局, 国家标准化管理委员会. 电网通用模型描述规范: GB/T 30149—2019[S]. 北京: 中国标准出版社, 2019. |
28 |
BERNSTEIN D. Containers and cloud: from LXC to Docker to Kubernetes[J]. IEEE Cloud Computing, 2014, 1 (3): 81- 84.
DOI |
29 |
CARL B. An introduction to Docker for reproducible research[J]. ACM SIGOPS Operating Systems Review, 2015, 49 (1): 71- 79.
DOI |
30 | 王珂, 姚建国, 余佩遥, 等. 基于深度强化学习的电网前瞻调度智能决策架构及关键技术初探[J]. 中国电机工程学报, 2022, 42 (15): 5430- 5439. |
WANG Ke, YAO Jianguo, YU Peiyao, et al. Architecture and key technologies of intelligent decision-making of power grid look-ahead dispatch based on deep reinforcement learning[J]. Proceedings of the CSEE, 2022, 42 (15): 5430- 5439. |
[1] | 李健, 张钧, 韩新阳, 靳晓凌. 新型电力系统形态量化推演方法的总体框架与功能设计[J]. 中国电力, 2025, 58(3): 1-7, 97. |
[2] | 张沛, 杨马婧, 张放, 谢桦, 刘广一, 李文云, 路学刚, 王珍意, 翟苏巍. 图数据库与图计算在电力系统调度运行应用综述[J]. 中国电力, 2025, 58(3): 119-131. |
[3] | 罗萍萍, 盛奥, 林济铿, 王忠岳, 李启本, 周平. 基于CGAN台风气象下负荷场景生成[J]. 中国电力, 2025, 58(2): 176-185. |
[4] | 朱瑞, 娄奇鹤, 靳晓凌, 刘畅. 适应新型电力系统的电网基建功能化投资结构演化研究[J]. 中国电力, 2024, 57(9): 194-204. |
[5] | 傅观君, 张富强, 夏鹏, 冯君淑, 张晋芳. 天然气发电在新型电力系统中的功能定位及发展前景研判[J]. 中国电力, 2024, 57(8): 67-74. |
[6] | 翟苏巍, 李银银, 杜凡, 李文云, 潘凯岩, 梁峻恺. 考虑海量分布式能源接入的配电网分布式无功控制策略[J]. 中国电力, 2024, 57(8): 138-144. |
[7] | 李碧君, 李威, 董希建. 新型电力系统中主控型安全稳定服务质量的在线评估[J]. 中国电力, 2024, 57(8): 168-181. |
[8] | 王雪, 刘林, 卓庆东, 张海鹏, 杨苓, 许方园, 曹雨晨. 基于虚拟惯量控制的新型电力系统功率差前馈振荡抑制方法[J]. 中国电力, 2024, 57(4): 68-76. |
[9] | 周勤勇, 李根兆, 秦晓辉, 施浩波, 陈文静, 龚浩岳. 能源革命下的电力系统范式转换分析[J]. 中国电力, 2024, 57(3): 1-11. |
[10] | 张博智, 张茹, 焦东翔, 王龙宇, 周一凡, 周丽霞. 基于VMD-SAST的电能质量扰动分类识别方法[J]. 中国电力, 2024, 57(2): 34-40. |
[11] | 李卓, 王胤喆, 叶林, 罗雅迪, 宋旭日, 张振宇. 从感知-预测-优化综述图神经网络在电力系统中的应用[J]. 中国电力, 2024, 57(12): 2-16. |
[12] | 郭庆来, 兰健, 周艳真, 王铮澄, 曾泓泰, 孙宏斌. 基于混合智能的新型电力系统运行方式分析决策架构及其关键技术[J]. 中国电力, 2023, 56(9): 1-13. |
[13] | 任大伟, 侯金鸣, 肖晋宇, 金晨, 吴佳玮. 支撑双碳目标的新型储能发展潜力及路径研究[J]. 中国电力, 2023, 56(8): 17-25. |
[14] | 武震, 霍彦达, 张翼, 黄巨龙, 戴剑锋. 考虑新能源发电量季节性分布的省区级季节性储能需求测算方法[J]. 中国电力, 2023, 56(8): 40-47. |
[15] | 杨晓峰, 方逸航, 赵鹏臻, 王承民, 谢宁. 基于K-means和BPNN的风机状态识别[J]. 中国电力, 2023, 56(6): 158-166,175. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||