[1] 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43(2): 555–581 LI Bo, CHEN Minyou, ZHONG Haiwang, et al. A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43(2): 555–581 [2] 郑外生, 陈亦平, 周保荣. 云南新型电力系统运行控制体系的构想[J]. 南方电网技术, 2022, 16(9): 83–89 ZHANG Waisheng, CHEN Yiping, ZHOU Baorong. Concept of operation and control system of Yunnan new power system[J]. Southern Power System Technology, 2022, 16(9): 83–89 [3] 刘沅昆, 张维静, 张艳, 等. 面向新型电力系统的新能源与储能联合规划方法[J]. 智慧电力, 2022, 50(10): 1–8 LIU Yuankun, ZHANG Weijing, ZHANG Yan, et al. Joint planning method of renewable energy and energy storage for new-type power system[J]. Smart Power, 2022, 50(10): 1–8 [4] 刘映尚, 马骞, 王子强, 等. 新型电力系统电力电量平衡调度问题的思考[J]. 中国电机工程学报, 2023, 43(5): 1694–1706 LIU Yingshang, MA Qian, WANG Ziqiang, et al. Cogitation on power and electricity balance dispatching in new power system[J]. Proceedings of the CSEE, 2023, 43(5): 1694–1706 [5] 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45(9): 171–191 ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45(9): 171–191 [6] 舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23(6): 61–69 SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23(6): 61–69 [7] 陈熙, 程瑜, 丁肇豪. 低碳驱动的长时储能容量补偿机制[J]. 电力系统自动化, 2023, 47(7): 32–41 CHEN Xi, CHENG Yu, DING Zhaohao. Low-carbon-driven capacity payment mechanism of long-term energy storage[J]. Automation of Electric Power Systems, 2023, 47(7): 32–41 [8] ARGYROU M C, CHRISTODOULIDES P, KALOGIROU S A. Energy storage for electricity generation and related processes: technologies appraisal and grid scale applications[J]. Renewable and Sustainable Energy Reviews, 2018, 94: 804–821. [9] 孙子茹, 艾芊, 居来提·阿不力孜, 等. 考虑季节性氢储及期货式碳交易的综合能源系统年度规划研究[J]. 中国电力, 2022, 55(8): 2–13 SUN Ziru;AI Qian;JULAITI Abuliz, et al. Annual planning study of integrated energy system considering seasonal hydrogen storage and futures carbon trading[J]. Electric Power, 2022, 55(8): 2–13 [10] 包雪珂. 基于SD的中国火电碳排放预测与控制研究[D]. 衡阳: 南华大学, 2021. BAO Xueke. Study on prediction and control of carbon emissions from thermal power plants in China based on SD[D]. Hengyang: University of South China, 2021. [11] 姜海洋, 杜尔顺, 朱桂萍, 等. 面向高比例可再生能源电力系统的季节性储能综述与展望[J]. 电力系统自动化, 2020, 44(19): 194–207 JIANG Haiyang, DU Ershun, ZHU Guiping, et al. Review and prospect of seasonal energy storage for power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2020, 44(19): 194–207 [12] REUß M, GRUBE T, ROBINIUS M, et al. Seasonal storage and alternative carriers: a flexible hydrogen supply chain model[J]. Applied Energy, 2017, 200: 290–302. [13] XU J, WANG R Z, LI Y. A review of available technologies for seasonal thermal energy storage[J]. Solar Energy, 2014, 103: 610–638. [14] 宋小云, 白子为, 张高群, 等. 适于PEM燃料电池的工业副产氢气纯化技术及其在电网中的应用前景[J]. 全球能源互联网, 2021, 4(5): 447–453 SONG Xiaoyun, BAI Ziwei, ZHANG Gaoqun, et al. Purification technology of industrial by-product hydrogen used in proton exchange membrane fuel cells and its application prospects in power grids[J]. Journal of Global Energy Interconnection, 2021, 4(5): 447–453 [15] JIANG W L, DU F M, DRECHSLER K, et al. Combined composites layup architecture and mechanical evaluation of type IV pressure vessels: a novel analytical approach[J]. International Journal of Hydrogen Energy, 2023, 48(46): 17565–17576. [16] BREY J J. Use of hydrogen as a seasonal energy storage system to manage renewable power deployment in Spain by 2030[J]. International Journal of Hydrogen Energy, 2021, 46(33): 17447–17457. [17] 余楠, 王如竹, 陆紫生, 等. 三相吸收跨季节储能循环的理论分析[J]. 工程热物理学报, 2014, 35(3): 423–427 YU Nan, WANG Ruzhu, LU Zisheng, et al. Theoretical analysis of a three-phase absorption cycle for seasonal heat storage[J]. Journal of Engineering Thermophysics, 2014, 35(3): 423–427 [18] GE Z W, LI Y L, LI D C, et al. Thermal energy storage: challenges and the role of particle technology[J]. Particuology, 2014, 15: 2–8. [19] GABRIELLI P, GAZZANI M, MARTELLI E, et al. Optimal design of multi-energy systems with seasonal storage[J]. Applied Energy, 2018, 219: 408–424. [20] 马兰, 谢丽蓉, 叶林, 等. 基于混合储能双层规划模型的风电波动平抑策略[J]. 电网技术, 2022, 46(3): 1016–1029 MA Lan, XIE Lirong, YE Lin, et al. Wind power fluctuation suppression strategy based on hybrid energy storage Bi-level programming model[J]. Power System Technology, 2022, 46(3): 1016–1029 [21] 陈乾, 张沈习, 程浩忠, 等. 计及热网蓄热特性的多区域综合能源系统多元储能规划[J/OL]. 中国电机工程学报: 1–14[2023-07-14]. https: //doi. org/10.13334/j. 0258-8013. pcsee. 221515. CHEN Qian, ZHANG Shenxi, CHENG Haozhong, et al. Multiple energy storage planning of multi-district integrated energy system considering heat storage characteristics of heat network[J/OL]. Proceedings of the CSEE: 1–14[2023-07-14].https://doi.org/10.13334/j.0258-8013.pcsee.221515. [22] 肖晋宇, 侯金鸣, 杜尔顺, 等. 支撑电力系统清洁转型的储能需求量化模型与案例分析[J]. 电力系统自动化, 2021, 45(18): 9–17 XIAO Jinyu, HOU Jinming, DU Ershun, et al. Quantitative model and case study of energy storage demand supporting clean transition of electric power system[J]. Automation of Electric Power Systems, 2021, 45(18): 9–17 [23] 曹新慧, 车勇, 司政, 等. 广域储能电站定容-选址一体规划[J]. 中国电力, 2022, 55(7): 110–120 CAO Xinhui, CHE Yong, SI Zheng, et al. Integrated planning of optimal sizing and siting of energy storage plants across wide area[J]. Electric Power, 2022, 55(7): 110–120 [24] DU E S, ZHANG N, KANG C Q, et al. A high-efficiency network-constrained clustered unit commitment model for power system planning studies[J]. IEEE Transactions on Power Systems, 2019, 34(4): 2498–2508.
|