中国电力 ›› 2025, Vol. 58 ›› Issue (4): 182-192.DOI: 10.11930/j.issn.1004-9649.202412008
• 面向新型电力系统的智慧用能优化与控制 • 上一篇 下一篇
王宣元1(
), 张玮1, 李长宇2, 谢欢2, 郭庆来3(
), 王彬3, 张宇谦3
收稿日期:2024-12-02
录用日期:2025-03-02
发布日期:2025-04-23
出版日期:2025-04-28
作者简介:基金资助:
WANG Xuanyuan1(
), ZHANG Wei1, LI Changyu2, XIE Huan2, GUO Qinglai3(
), WANG Bin3, ZHANG Yuqian3
Received:2024-12-02
Accepted:2025-03-02
Online:2025-04-23
Published:2025-04-28
Supported by:摘要:
随着可再生能源的大规模接入,电力系统面临灵活性资源短缺的挑战,而配电网中的分布式电源和电力电子设备具备提供灵活性的潜力。为此,综合了多种灵活性提供单元、网络运行约束及分布式电源和负荷的不确定性,提出一种考虑不确定性的配网灵活性提供潜力评估方法。首先,建立一种改进的确定性可行域计算方法;然后,通过基于抽样的方法建模负荷和分布式电源的不确定性;最后,通过算例结果验证该方法的准确性与有效性。算例结果表明,该方法能够提供可行域的概率分布及不同置信水平下的可行域,且在相同计算成本下具有更高的精度,避免了过于乐观的结果。
王宣元, 张玮, 李长宇, 谢欢, 郭庆来, 王彬, 张宇谦. 考虑随机性的主动配电网有功无功可行域计算方法[J]. 中国电力, 2025, 58(4): 182-192.
WANG Xuanyuan, ZHANG Wei, LI Changyu, XIE Huan, GUO Qinglai, WANG Bin, ZHANG Yuqian. A Method for Calculating the Feasible Operation Region of Active and Reactive Power in Active Distribution Networks Considering Stochasticity[J]. Electric Power, 2025, 58(4): 182-192.
| FPU 类型 | 数量 | 容量/kW | 备注 | |||
| PV | 8 | 12.5×8=100 | 位于节点1、2、12、13、14、15、23、24 | |||
| DFIG | 4 | 100+150×3=550 | 位于节点9、10、11、17(100 kW) | |||
| ESS | 2 | 25×2=50 | 位于节点3、4 | |||
| OLTC | 1 | / | 配电变压器(±2×2.5%) |
表 1 算例I研究中的FPU
Table 1 The FPUs in the case study I
| FPU 类型 | 数量 | 容量/kW | 备注 | |||
| PV | 8 | 12.5×8=100 | 位于节点1、2、12、13、14、15、23、24 | |||
| DFIG | 4 | 100+150×3=550 | 位于节点9、10、11、17(100 kW) | |||
| ESS | 2 | 25×2=50 | 位于节点3、4 | |||
| OLTC | 1 | / | 配电变压器(±2×2.5%) |
| FPU 类型 | 数量 | 容量/MW | 备注 | |||
| PV | 14 | 10×2+4× 2.5=30 | 位于节点4(2.5 MW)、5(2.5 MW)、6、7、8、9、10、28(2.5 MW)、29(2.5 MW)、30、31、32、33、34 | |||
| DG | 1 | 20 | 位于节点80 | |||
| ESS | 5 | 1×5=5 | 位于节点75、77、85、110、112 | |||
| CL | 16 | 14×1.5+ 2×2=25 | 位于节点4、6、8、10、28、30、32、34(2 MW)、36(2 MW)、70、72、74、76、106、108、110、112 | |||
| OLTC | 1 | / | 配电变压器(±2×2.5%) |
表 2 算例II研究中的FPU
Table 2 The FPUs in the case study II
| FPU 类型 | 数量 | 容量/MW | 备注 | |||
| PV | 14 | 10×2+4× 2.5=30 | 位于节点4(2.5 MW)、5(2.5 MW)、6、7、8、9、10、28(2.5 MW)、29(2.5 MW)、30、31、32、33、34 | |||
| DG | 1 | 20 | 位于节点80 | |||
| ESS | 5 | 1×5=5 | 位于节点75、77、85、110、112 | |||
| CL | 16 | 14×1.5+ 2×2=25 | 位于节点4、6、8、10、28、30、32、34(2 MW)、36(2 MW)、70、72、74、76、106、108、110、112 | |||
| OLTC | 1 | / | 配电变压器(±2×2.5%) |
| 1 | 朱法华, 徐静馨. 双碳背景下中国与主要发达国家电力低碳转型比较[J]. 电力科技与环保, 2024, 40 (6): 561- 571. |
| ZHU Fahua, XU Jingxin. Comparison of low-carbon transformation in electricity between China and major developed countries under the background of carbon peaking and carbon neutrality[J]. Electric Power Technology and Environmental Protection, 2024, 40 (6): 561- 571. | |
| 2 | 谭显东, 刘俊, 徐志成, 等. “双碳” 目标下“十四五” 电力供需形势[J]. 中国电力, 2021, 54 (5): 1- 6. |
| TAN Xiandong, LIU Jun, XU Zhicheng, et al. Power supply and demand balance during the 14th Five-Year Plan period under the goal of carbon emission peak and carbon neutrality[J]. Electric Power, 2021, 54 (5): 1- 6. | |
| 3 | 卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45 (9): 171- 191. |
| ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45 (9): 171- 191. | |
| 4 | 金晨, 任大伟, 肖晋宇, 等. 支撑碳中和目标的电力系统源-网-储灵活性资源优化规划[J]. 中国电力, 2021, 54 (8): 164- 174. |
| JIN Chen, REN Dawei, XIAO Jinyu, et al. Optimization planning on power system supply-grid-storage flexibility resource for supporting the "carbon neutrality" target of China[J]. Electric Power, 2021, 54 (8): 164- 174. | |
| 5 | HUANG P X, VANFRETTI L. Adaptive damping control of MMC to suppress high-frequency resonance[J]. IEEE Transactions on Industry Applications, 2023, 59 (6): 7224- 7237. |
| 6 | 周海浪, 刘一畔, 陈雨果, 等. 考虑灵活性收益的需求侧资源可行域聚合方法[J]. 中国电力, 2022, 55 (9): 56- 63, 155. |
| ZHOU Hailang, LIU Yipan, CHEN Yuguo, et al. Demand side feasible region aggregation considering flexibility revenue[J]. Electric Power, 2022, 55 (9): 56- 63, 155. | |
| 7 | ZHOU Y, LI Z S, YANG M. A framework of utilizing distribution power systems as reactive power prosumers for transmission power systems[J]. International Journal of Electrical Power & Energy Systems, 2020, 121, 106139. |
| 8 | JIN X L, MU Y F, JIA H J, et al. Alleviation of overloads in transmission network: a multi-level framework using the capability from active distribution network[J]. International Journal of Electrical Power & Energy Systems, 2019, 112, 232- 251. |
| 9 | 尚博文, 徐铭铭, 张金帅, 等. 高比例分布式光伏接入背景下配电网电压调控方法研究综述[J]. 智慧电力, 2024, 52 (12): 1- 11. |
| SHANG Bowen, XU Mingming, ZHANG Jinshuai, et al. A review of voltage regulation methods for distribution networks in the context of high proportion of distributed photovoltaic integration[J]. Smart Power, 2024, 52 (12): 1- 11. | |
| 10 | 季湛洋, 胡阳, 孔令行, 等. 考虑多领域耦合特性的风电机组一次调频动态建模与仿真[J/OL]. 中国电力: 1–13 [2025-2-27]. http://kns.cnki.net/kcms/detail/11.3265.tm.20250226.1553.017.html. |
| JI Zhanyang, HU Yang, KONG Lingxing, et al. Dynamic modeling and simulation of wind turbine unit frequency regulation considering multi-domain coupling characteristics[J/OL]. Electric Power: 1–13 [2025-2-27]. http://kns.cnki.net/kcms/detail/11.3265.tm.20250226.1553.017.html. | |
| 11 | 鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37 (1): 9- 20. |
| LU Zongxiang, LI Haibo, QIAO Ying. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37 (1): 9- 20. | |
| 12 | 齐军, 马鹏, 周生存, 等. 基于深度强化学习的新型终端配电网源荷储协同控制[J/OL]. 内蒙古电力技术: 1–12 [2025-2-19]. http://kns.cnki.net/kcms/detail/15.1200.tm.20250218.1641.004.html. |
| Qi Jun, MA Peng, ZHOU Shengcun, et al. New terminal distribution network source load storage collaborative control based on deep reinforcement learning[J/OL]. Inner Mongolia Electric Power: 1–12 [2025-2-19]. http://kns.cnki.net/kcms/detail/15.1200.tm.20250218.1641.004.html. | |
| 13 | YU M K, WANG J X, YAN J, et al. Pricing information in smart grids: a quality-based data valuation paradigm[J]. IEEE Transactions on Smart Grid, 2022, 13 (5): 3735- 3747. |
| 14 | 王琦, 董洪达, 贺子谦, 等. 考虑灵活性资源互济的虚拟电厂集群优化调度策略[J]. 东北电力大学学报, 2024, 44 (5): 101- 111. |
| WANG Qi, DONG Hongda, HE Ziqian, et al. Optimization and scheduling strategy for virtual power plant clusters considering flexibility and resource complementarity[J]. Journal of Northeast Electric Power University, 2024, 44 (5): 101- 111. | |
| 15 | 王佳莹, 檀鑫鑫, 吴玉鑫, 等. 多形态灵活资源调控下的可再生能源配额多主体博弈研究[J]. 智慧电力, 2025, 53 (2): 9- 15, 40. |
| WANG Jiaying, TAN Xinxin, WU Yuxin, et al. Multi-agent game of renewable energy quotas under polymorphic flexible resource regulation[J]. Smart Power, 2025, 53 (2): 9- 15, 40. | |
| 16 | SARSTEDT M, HOFMANN L. Monetarization of the feasible operation region of active distribution grids based on a cost-optimal flexibility disaggregation[J]. IEEE Access, 2022, 10, 5402- 5415. |
| 17 | SUN H B, GUO Q L, SHEN X W, et al. Energy Internet: redefinition and categories[J]. Energy Internet, 2024, 1 (1): 3- 8. |
| 18 | 刘军会, 龚健, 佟炳绅, 等. 基于分布式储能与光伏的虚拟电厂与配电网协同优化方法[J/OL]. 中国电力: 1–9 [2025-2-26]. http://kns.cnki.net/kcms/detail/11.3265.TM.20250226.0812.004.html. |
| LIU Junhui, GONG Jian, TONG Bingshen, et al. Coordinated optimization method for virtual power plants considering distributed energy storage and photovoltaics with distribution networks[J/OL]. Electric Power: 1–9 [2025-2-26]. http://kns.cnki.net/kcms/detail/11.3265.TM.20250226.0812.004.html. | |
| 19 | ZHAO L, ZHANG W, HAO H, et al. A geometric approach to aggregate flexibility modeling of thermostatically controlled loads[J]. IEEE Transactions on Power Systems, 2017, 32 (6): 4721- 4731. |
| 20 | HELENO M, SOARES R, SUMAILI J, et al. Estimation of the flexibility range in the transmission-distribution boundary[C]//2015 IEEE Eindhoven PowerTech. Eindhoven, Netherlands. IEEE, 2015: 1–6. |
| 21 | MOKHTARIAN K, JACOBSEN H A. Coordinated caching in planet-scale CDNs: analysis of feasibility and benefits[C]//IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications. San Francisco, CA, USA. IEEE, 2016: 1–9. |
| 22 | SILVA J, SUMAILI J, BESSA R J, et al. Estimating the active and reactive power flexibility area at the TSO-DSO interface[J]. IEEE Transactions on Power Systems, 2018, 33 (5): 4741- 4750. |
| 23 | GIACOMO V, ROSSI M , MONETA D . Effects of Distribution System Characteristics on TSO-DSO Ancillary Services Exchange[C]//CIRED 2019. |
| 24 |
STANKOVIĆ S, SÖDER L, HAGEMANN Z, et al. Reactive power support adequacy at the DSO/TSO interface[J]. Electric Power Systems Research, 2021, 190, 106661.
DOI |
| 25 |
DING T, ZENG Z Y, QU M, et al. Two-stage chance-constrained stochastic thermal unit commitment for optimal provision of virtual inertia in wind-storage systems[J]. IEEE Transactions on Power Systems, 2021, 36 (4): 3520- 3530.
DOI |
| 26 | CHEN X, LI N. Leveraging two-stage adaptive robust optimization for power flexibility aggregation[J]. IEEE Transactions on Smart Grid, 2021, 12 (5): 3954- 3965. |
| 27 | 张天策, 李庚银, 王剑晓, 等. 基于可行域投影理论的新能源电力系统协同运行方法[J]. 电工技术学报, 2024, 39 (9): 2784- 2796. |
| ZHANG Tiance, LI Gengyin, WANG Jianxiao, et al. Coordinated operation method of renewable energy power systems based on feasible region projection theory[J]. Transactions of China Electrotechnical Society, 2024, 39 (9): 2784- 2796. | |
| 28 |
SAVVOPOULOS N, HATZIARGYRIOU N. An effective method to estimate the aggregated flexibility at distribution level[J]. IEEE Access, 2023, 11, 31373- 31383.
DOI |
| 29 | ZHOU M Y, CHEN S, HUANG K, et al. Coordination of medium-voltage distribution networks and microgrids based on an aggregate flexibility region approach[J]. Sustainable Energy, Grids and Networks, 2024, 39, 101485. |
| 30 | KUNDU S, KALSI K, BACKHAUS S. Approximating flexibility in distributed energy resources: a geometric approach[C]//2018 Power Systems Computation Conference (PSCC). Dublin, Ireland. IEEE, 2018: 1–7. |
| 31 | LIEN J M, AMATO N M. Approximate convex decomposition of polygons[J]. Computational Geometry, 2006, 35 (1/2): 100- 123. |
| 32 | GEOFFRION A M. Generalized benders decomposition[J]. Journal of Optimization Theory and Applications, 1972, 10 (4): 237- 260. |
| 33 | MCKAY M D, BECKMAN R J, CONOVER W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technometrics, 2000, 42 (1): 55. |
| 34 | BARAN M E, WU F F. Network reconfiguration in distribution systems for loss reduction and load balancing[J]. IEEE Transactions on Power Delivery, 2002, 4 (2): 1401- 1407. |
| 35 | RIAZ S, MANCARELLA P. On feasibility and flexibility operating regions of virtual power plants and TSO/DSO interfaces[C]//2019 IEEE Milan PowerTech. Milan, Italy. IEEE, 2019: 1–6. |
| 36 | LOPEZ L, GONZALEZ-CASTELLANOS A, POZO D, et al. QuickFlex: a fast algorithm for flexible region construction for the TSO-DSO coordination[C]//2021 International Conference on Smart Energy Systems and Technologies (SEST). Vaasa, Finland. IEEE, 2021: 1–6. |
| 37 | ZHANG D, FU Z C, ZHANG L C. An improved TS algorithm for loss-minimum reconfiguration in large-scale distribution systems[J]. Electric Power Systems Research, 2007, 77 (5/6): 685- 694. |
| [1] | 赵琳, 郭尚民, 商文颖, 董健, 王炜. 基于FDOA的可再生能源系统配置优化[J]. 中国电力, 2025, 58(7): 168-176. |
| [2] | 王彩霞, 吴思, 时智勇. 绿色电力消费认证国际实践与启示[J]. 中国电力, 2025, 58(5): 43-51. |
| [3] | 戴道明, 赵莺. 考虑消纳责任权重的可再生能源电力供应链绿证监管演化博弈分析[J]. 中国电力, 2025, 58(4): 216-229. |
| [4] | 姜通海, 王峰, 刘子琪, 单帅杰. 基于改进生成对抗网络的风光气象资源联合场景生成方法[J]. 中国电力, 2025, 58(3): 183-192. |
| [5] | 汤明润, 李若旸, 刘慕然, 程晓钰, 刘铫, 杨淑霞. 电力系统稳态下可再生能源大规模接入量预测[J]. 中国电力, 2025, 58(2): 126-132. |
| [6] | 黄堃, 付明, 翟家祥, 华昊辰. 基于改进线性化ADMM的多微网经济运行分布式协调优化[J]. 中国电力, 2025, 58(2): 193-202. |
| [7] | 吴迪, 王紫荆, 温灵, 俞露稼, 杨雷, 康俊杰. 德国煤电退出机制和电力安全保供的经验分析[J]. 中国电力, 2025, 58(10): 1-13. |
| [8] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
| [9] | 邹小燕, 张瑞宏. 考虑政府干预的可再生能源与储能企业合作模式演化博弈研究[J]. 中国电力, 2025, 58(1): 153-163. |
| [10] | 邵冲, 胡荣义, 余姣, 王明典. 考虑荷电与储氢状态的风光氢储系统动态控制仿真模型[J]. 中国电力, 2024, 57(7): 109-124. |
| [11] | 胡旭, 安锐坚, 杜宇晨, 施啸寒, 王越. 欧洲—北非氢能协同发展研究[J]. 中国电力, 2024, 57(7): 151-162. |
| [12] | 武群丽, 朱新宇. 可再生能源配额制下风光储联合参与现货市场的交易决策[J]. 中国电力, 2024, 57(4): 77-88. |
| [13] | 刘晓, 董春发, 瞿寒冰, 于光远, 苏善诚. 低压直流系统高频振荡问题的降阶建模及控制参数设计[J]. 中国电力, 2024, 57(2): 82-93. |
| [14] | 仪忠凯, 侯朗博, 徐英, 吴永峰, 李志民, 吴俊飞, 冯腾, 韩柳. 市场环境下灵活性资源虚拟电厂聚合调控关键技术综述[J]. 中国电力, 2024, 57(12): 82-96. |
| [15] | 王麒翔, 韩震焘, 梁毅. 基于博弈论均衡的风险防控经济调度分析[J]. 中国电力, 2024, 57(10): 69-77. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编