中国电力 ›› 2025, Vol. 58 ›› Issue (10): 1-13.DOI: 10.11930/j.issn.1004-9649.202504028
• “十五五”电力系统源网荷储协同规划运行关键技术 • 上一篇 下一篇
吴迪1(
), 王紫荆2(
), 温灵1, 俞露稼1, 杨雷1(
), 康俊杰1(
)
收稿日期:2025-04-12
发布日期:2025-10-23
出版日期:2025-10-28
作者简介:基金资助:
WU Di1(
), WANG Zijing2(
), WEN Ling1, YU Lujia1, YANG Lei1(
), KANG Junjie1(
)
Received:2025-04-12
Online:2025-10-23
Published:2025-10-28
Supported by:摘要:
随着德国能源转型的深入推进,加速煤电退出和促进高比例可再生能源消纳成为重点手段。德国煤电退出的顺利推进得益于全社会高度一致的退煤共识,以及政府灵活运用市场手段和行政命令相结合的政策工具。面对煤电逐步退出和可再生能源渗透率持续上升的双重挑战,德国通过不断优化可再生能源上网电价政策以及发挥平衡单元、跨国电网互济和常规电源的保供作用等措施,成功维持了电力系统高安全性与稳定性。本文深入分析德国煤电退出机制和安全保供的相关举措,归纳相关经验与教训,探讨德国实践对中国的借鉴意义,为碳中和背景下中国新型电力系统的构建提供有益参考。
吴迪, 王紫荆, 温灵, 俞露稼, 杨雷, 康俊杰. 德国煤电退出机制和电力安全保供的经验分析[J]. 中国电力, 2025, 58(10): 1-13.
WU Di, WANG Zijing, WEN Ling, YU Lujia, YANG Lei, KANG Junjie. Analysis of Germany's Experience with Coal Power Phase-out Mechanism and Power Supply Safeguarding[J]. Electric Power, 2025, 58(10): 1-13.
| 轮次 | 竞拍截 止日期 | 目标容 量/MW | 招标 限价/ (€·kW–1) | Fgird/ (€·kW–1) | 是否允许 南部煤电 厂参与 | 煤电厂 停运时间 | ||||||
| 一 | 2020/9/1 | 165 | — | 否 | 2021年1月 | |||||||
| 二 | 2021/1/4 | 155 | 119 | 是 | 2021年12月 | |||||||
| 三 | 2021/4/30 | 155 | 106 | 是 | 2022年10月 | |||||||
| 四 | 2021/10/1 | 433 | 116 | 93 | 是 | 2023年5月 | ||||||
| 五 | 2022/3/1 | 107 | 85 | 是 | 2024年5月 | |||||||
| 六 | 2022/8/1 | 699 | 98 | 72 | 是 | 2025年4月 | ||||||
| 七 | 2023/6/1 | 542 | 89 | 54 | 是 | 2026年3月 |
表 1 德国煤电竞拍机制概览
Table 1 Overview of German coal exit auction rule
| 轮次 | 竞拍截 止日期 | 目标容 量/MW | 招标 限价/ (€·kW–1) | Fgird/ (€·kW–1) | 是否允许 南部煤电 厂参与 | 煤电厂 停运时间 | ||||||
| 一 | 2020/9/1 | 165 | — | 否 | 2021年1月 | |||||||
| 二 | 2021/1/4 | 155 | 119 | 是 | 2021年12月 | |||||||
| 三 | 2021/4/30 | 155 | 106 | 是 | 2022年10月 | |||||||
| 四 | 2021/10/1 | 433 | 116 | 93 | 是 | 2023年5月 | ||||||
| 五 | 2022/3/1 | 107 | 85 | 是 | 2024年5月 | |||||||
| 六 | 2022/8/1 | 699 | 98 | 72 | 是 | 2025年4月 | ||||||
| 七 | 2023/6/1 | 542 | 89 | 54 | 是 | 2026年3月 |
| 项目容 量/kW | 基准上 网电价/ (€–2·(kW·h)–1) | 基础上网电 价较EEG 2021增加/ (€–2·(kW·h)–1) | 全额上 网补贴/ (€–2·(kW·h)–1) | 总计上 网电价/ (€–2·(kW·h)–1) | ||||
| (0,10] | 8.6 | 1.67 | 4.8 | 13.4 | ||||
| (10,40] | 7.5 | 0.65 | 3.8 | 11.3 | ||||
| (40,100] | 6.2 | 0.84 | 5.1 | 11.3 | ||||
| (100,300] | 6.2 | 0.84 | 3.2 | 9.4 | ||||
| (300,750] | 6.2 | 0.84 | — | 6.2 |
表 2 EEG2023下750 kW及以下光伏项目的上网电价补贴
Table 2 Feed-in tariff for PV projects of 750 kW and below under EEG 2023
| 项目容 量/kW | 基准上 网电价/ (€–2·(kW·h)–1) | 基础上网电 价较EEG 2021增加/ (€–2·(kW·h)–1) | 全额上 网补贴/ (€–2·(kW·h)–1) | 总计上 网电价/ (€–2·(kW·h)–1) | ||||
| (0,10] | 8.6 | 1.67 | 4.8 | 13.4 | ||||
| (10,40] | 7.5 | 0.65 | 3.8 | 11.3 | ||||
| (40,100] | 6.2 | 0.84 | 5.1 | 11.3 | ||||
| (100,300] | 6.2 | 0.84 | 3.2 | 9.4 | ||||
| (300,750] | 6.2 | 0.84 | — | 6.2 |
图 7 德国2024年电力进出口情况(负值为进口,正值为出口)
Fig.7 The electricity import and export situation of Germany in 2024 (negative indicates imports, and positive indicates exports)
图 8 德国2024年8月23日电力供需曲线(负值为进口,正值为出口)
Fig.8 Germany's electricity supply and demand curves on August 23, 2024. (negative indicates imports, and positive indicates exports)
| 1 | EMBER. Electricity data explorer[EB/OL]. (2025-02-01)[2025-02-23]. https://ember-energy.org/data/electricity-data-explorer/. |
| 2 | Agora Energiewende. The German energiewende[EB/OL]. (2025-02-18)[2025-02-23]. https://www.agora-energiewende.org/about-us/the-german-energiewende. |
| 3 | 李品, 谢晓敏, 黄震. 德国能源转型进程及对中国的启示[J]. 气候变化研究进展, 2023, 19 (1): 116- 126. |
| LI Pin, XIE Xiaomin, HUANG Zhen. The process of Germany energiewende and its enlightenment to China[J]. Climate Change Research, 2023, 19 (1): 116- 126. | |
| 4 |
LI N. Experience and enlightenment of energy transition in Germany[J]. IOP Conference Series: Earth and Environmental Science, 2021, 621 (1): 012172.
DOI |
| 5 |
CHEN C, XUE B, CAI G T, et al. Comparing the energy transitions in Germany and China: synergies and recommendations[J]. Energy Reports, 2019, 5, 1249- 1260.
DOI |
| 6 |
叶小宁, 王彩霞, 李琼慧, 等. 国外新能源高占比电力系统电力供应保障措施及启示[J]. 中国电力, 2024, 57 (4): 61- 67.
DOI |
|
YE Xiaoning, WANG Caixia, LI Qionghui, et al. Power supply ensuring measures and implications of foreign countries' power systems with high proportion of new energy[J]. Electric Power, 2024, 57 (4): 61- 67.
DOI |
|
| 7 |
刘之琳, 许传龙, 郑海峰, 等. 德国关停核电前后保供应促消纳经验分析[J]. 中国电力, 2023, 56 (10): 145- 152.
DOI |
|
LIU Zhilin, XU Chuanlong, ZHENG Haifeng, et al. Empirical analysis of ensuring electricity supply and promoting renewable power consumption before and after the shutdown of nuclear power plants: the Germany case[J]. Electric Power, 2023, 56 (10): 145- 152.
DOI |
|
| 8 |
黄越辉, 王跃峰. 德国新能源消纳的经验与启示[J]. 国家电网, 2017, (7): 83- 85.
DOI |
| 9 | OLBRICH S, BAUKNECHT D, SPÄTH P. Policy mixes for net-zero energy transitions: insights from energy sector integration in Germany[J]. Energy Research & Social Science, 2024, 118, 103822. |
| 10 |
陈启鑫, 张维静, 滕飞, 等. 欧洲跨国电力市场的输电机制与耦合方式[J]. 全球能源互联网, 2020, 3 (5): 423- 429.
DOI |
|
CHEN Qixin, ZHANG Weijing, TENG Fei, et al. Transmission mechanisms and coupling approaches in European transnational electricity markets[J]. Journal of Global Energy Interconnection, 2020, 3 (5): 423- 429.
DOI |
|
| 11 |
高政南, 姜楠, 陈启鑫, 等. 德国电力市场能源转型建设及启示[J]. 中国电力, 2024, 57 (6): 204- 214.
DOI |
|
GAO Zhengnan, JIANG Nan, CHEN Qixin, et al. Construction experience of German electricity market adapting to energy transition[J]. Electric Power, 2024, 57 (6): 204- 214.
DOI |
|
| 12 |
杜云龙, 戴强晟, 苏大威, 等. 德国新型储能政策及市场机制对江苏的启示[J]. 电力需求侧管理, 2024, 26 (1): 113- 118.
DOI |
|
DU Yunlong, DAI Qiangsheng, SU Dawei, et al. Enlightenment of Germany's new energy storage policy and market mechanism to Jiangsu[J]. Power Demand Side Management, 2024, 26 (1): 113- 118.
DOI |
|
| 13 | 梁志峰, 礼晓飞, 郭琳润, 等. 德国电力系统转型对我国新能源发展运行的启示[J]. 电网技术, 2024, 48 (7): 2884- 2894. |
| LIANG Zhifeng, LI Xiaofei, GUO Linrun, et al. Enlightenment of Germany's power system transformation on the development and operation of renewable energy in China[J]. Power System Technology, 2024, 48 (7): 2884- 2894. | |
| 14 | Agora Energiewende. Coal phase-out in Germany. The multi-stakeholder commission as a policy tool[R]. Germany: Agora Energiewende, 2024. |
| 15 | SCOTT, J., THUY, N. N., LITZ, P., et al. Coal phase-out in Germany: the role of coal exit auctions[R]. Germany: Agora Energiewende and Aurora Energy Research, 2022. |
| 16 | European Commission. State aid: lignite-fired power plants in Germany[EB/OL]. (2021-03-02)[2025-04-06]. https://ec.europa.eu/commission/presscorner/detail/en/ip_21_972. |
| 17 |
TIEDEMANN S, MÜLLER-HANSEN F. Auctions to phase out coal power: lessons learned from Germany[J]. Energy Policy, 2023, 174, 113387.
DOI |
| 18 | Bundesnetzagentur. Information on the completed tendering procedures for the coal phase-out[EB/OL]. (2023-08-25) [2025-02-27]. https://www.bundesnetzagentur.de/DE/Fachthemen/ElektrizitaetundGas/Kohleausstieg/BeendeteAusschreibungen/start.html. |
| 19 | SMARD. Electricity-energy data compact[EB/OL]. (2023-08-25)[2025-02-27]. https://www.smard.de/en/energy-data-compact/electricity. |
| 20 | Bundesnetzagentur. Results of final coal phase-out tendering process[EB/OL]. (2023-08-25)[2025-02-28]. https://www.bundesnetzagentur.de/SharedDocs/Pressemitteilungen/EN/2023/20230825_Kohle.html. |
| 21 | 陈宋宋, 董家伟, 王舒杨, 等. 德国电力平衡单元机制及其启示[J]. 电网技术, 2024, 48 (10): 4157- 4167. |
| CHEN Songsong, DONG Jiawei, WANG Shuyang, et al. German balance group mechanism and its inspiration[J]. Power System Technology, 2024, 48 (10): 4157- 4167. | |
| 22 | Clean Energy Wire. What's new in Germany's renewable energy act 2021[EB/OL]. (2021-04-23)[2025-03-01]. https://www.cleanenergywire.org/factsheets/whats-new-germanys-renewable-energy-act-2021. |
| 23 | PV Magazine. Germany raises feed-in tariffs for solar up to 750 KW[EB/OL]. (2022-07-07)[2025-03-01]. https://www.pv-magazine.com/2022/07/07/germany-raises-feed-in-tariffs-for-solar-up-to-750-kw/. |
| 24 | PV Magazine. Germany introduces new rules for solar remuneration during negative prices[EB/OL]. (2025-02-17)[2025-03-01]. https://www.pv-magazine.com/2025/02/17/germany-introduces-new-rules-for-solar-remuneration-during-negative-prices/#:~:text=The%20German%20Parliament%20approved%20the,exceeding%202%20kW%20in%20size. |
| 25 | IEA. Integrating solar and wind[R]. Paris: IEA, 2024. |
| 26 |
刘秋华, 姜亚熙, 张正延, 等. 德国与英国电力市场平衡机制对比分析及启示[J]. 电力系统自动化, 2024, 48 (14): 8- 15.
DOI |
|
LIU Qiuhua, JIANG Yaxi, ZHANG Zhengyan, et al. Comparative analysis on electricity market balancing mechanisms of Germany and UK and its enlightenment[J]. Automation of Electric Power Systems, 2024, 48 (14): 8- 15.
DOI |
|
| 27 | Federal Ministry for Economic Affairs and Climate Action. Agreement on power station strategy[EB/OL]. (2024-05-02)[2025-02-28]. https://www.bmwk.de/Redaktion/EN/Pressemitteilungen/2024/02/20240205-agreement-on-power-station-strategy.html#:~:text=The%20Power%20Station%20Strategy%20provides,the%20Climate%20and%20Transformation%20Fund. |
| 28 | Federal Ministry for Economic Affairs and Climate Action. National hydrogen strategy update[R]. Germany: Federal Ministry for Economic Affairs and Climate Action, 2023. |
| 29 | DOUCET F, BLOHM M, VON DÜSTERLHO E, et al. Green hydrogen for the energy transition in Germany-potentials, limits, and priorities[C]//2024 20th International Conference on the European Energy Market (EEM). Istanbul, Turkiye. IEEE, 2024: 1–6. |
| 30 |
AN K X, ZHENG X Z, SHEN J X, et al. Repositioning coal power to accelerate net-zero transition of China's power system[J]. Nature Communications, 2025, 16, 2311.
DOI |
| 31 |
CUI R Y, HULTMAN N, CUI D Y, et al. A plant-by-plant strategy for high-ambition coal power phaseout in China[J]. Nature Communications, 2021, 12 (1): 1468.
DOI |
| 32 |
舒印彪, 张丽英, 张运洲, 等. 我国电力碳达峰、碳中和路径研究[J]. 中国工程科学, 2021, 23 (6): 1- 14.
DOI |
|
SHU Yinbiao, ZHANG Liying, ZHANG Yunzhou, et al. Carbon peak and carbon neutrality path for China's power industry[J]. Strategic Study of CAE, 2021, 23 (6): 1- 14.
DOI |
|
| 33 | 辛保安, 陈梅, 赵鹏, 等. 碳中和目标下考虑供电安全约束的我国煤电退减路径研究[J]. 中国电机工程学报, 2022, 42 (19): 6919- 6931. |
| XIN Baoan, CHEN Mei, ZHAO Peng, et al. Research on coal power generation reduction path considering power supply adequacy constraints under carbon neutrality target in China[J]. Proceedings of the CSEE, 2022, 42 (19): 6919- 6931. | |
| 34 | 魏泓屹, 卓振宇, 张宁, 等. 中国电力系统碳达峰·碳中和转型路径优化与影响因素分析[J]. 电力系统自动化, 2022, 46 (19): 1- 12. |
| WEI Hongyi, ZHUO Zhenyu, ZHANG Ning, et al. Transition path optimization and influencing factor analysis of carbon emission peak and carbon neutrality for power system of China[J]. Automation of Electric Power Systems, 2022, 46 (19): 1- 12. | |
| 35 |
WU D, ZHANG Y Q, LIU B, et al. Optimization of coal power phaseout pathways ensuring energy security: evidence from Shandong, China's largest coal power province[J]. Energy Policy, 2024, 192, 114180.
DOI |
| 36 |
傅观君, 张富强, 夏鹏, 等. 天然气发电在新型电力系统中的功能定位及发展前景研判[J]. 中国电力, 2024, 57 (8): 67- 74.
DOI |
|
FU Guanjun, ZHANG Fuqiang, XIA Peng, et al. Functional orientation and development prospect of natural gas power generation in new power system[J]. Electric Power, 2024, 57 (8): 67- 74.
DOI |
|
| 37 | 孙启星, 张超, 李成仁, 等. “碳达峰、碳中和” 目标下的电力系统成本及价格水平预测[J]. 中国电力, 2023, 56 (1): 9- 16. |
| SUN Qixing, ZHANG Chao, LI Chengren, et al. Prediction of power system cost and price level under the goal of "carbon peak and carbon neutralization"[J]. Electric Power, 2023, 56 (1): 9- 16. | |
| 38 | 余潇潇, 宋福龙, 李隽, 等. 含高比例新能源电力系统极端天气条件下供电安全性的提升[J]. 现代电力, 2023, 40 (3): 303- 313. |
| YU Xiaoxiao, SONG Fulong, LI Jun, et al. Power supply security improvement of power grid with high proportion of renewable energy under extreme weather events[J]. Modern Electric Power, 2023, 40 (3): 303- 313. |
| [1] | 王学军, 方水平, 池光湧. 考虑密集通道的多机电力系统暂态稳定性评估方法[J]. 中国电力, 2025, 58(8): 139-146. |
| [2] | 张博航, 戚军, 谢路耀, 张有兵, 张博扬. 考虑需求侧响应的互联电力系统分布式模型预测频率控制[J]. 中国电力, 2025, 58(7): 105-114. |
| [3] | 赵琳, 郭尚民, 商文颖, 董健, 王炜. 基于FDOA的可再生能源系统配置优化[J]. 中国电力, 2025, 58(7): 168-176. |
| [4] | 汪悦萍, 谭青博, 赵洱岽, 谭忠富, 吴学辉. 灵活性调节煤电机组成本疏导的三部制电价机制分析[J]. 中国电力, 2025, 58(7): 217-226. |
| [5] | 王艳阳, 李建朝, 刘景青, 唐程, 王剑涛, 卢锦玲, 任惠. 电碳耦合机制下多元主体综合成本分析[J]. 中国电力, 2025, 58(6): 180-189. |
| [6] | 王彩霞, 吴思, 时智勇. 绿色电力消费认证国际实践与启示[J]. 中国电力, 2025, 58(5): 43-51. |
| [7] | 胡常胜, 摆志俊, 张章, 李建康, 沈子洋. 计及静态电压稳定裕度的电制氢容量和布点规划研究[J]. 中国电力, 2025, 58(5): 91-101. |
| [8] | 王宣元, 张玮, 李长宇, 谢欢, 郭庆来, 王彬, 张宇谦. 考虑随机性的主动配电网有功无功可行域计算方法[J]. 中国电力, 2025, 58(4): 182-192. |
| [9] | 戴道明, 赵莺. 考虑消纳责任权重的可再生能源电力供应链绿证监管演化博弈分析[J]. 中国电力, 2025, 58(4): 216-229. |
| [10] | 李健, 张钧, 韩新阳, 靳晓凌. 新型电力系统形态量化推演方法的总体框架与功能设计[J]. 中国电力, 2025, 58(3): 1-7, 97. |
| [11] | 张磊, 马晓伟, 王满亮, 陈力, 高丙团. 互联新能源电力系统区内AGC机组分布式协同控制策略[J]. 中国电力, 2025, 58(3): 8-19. |
| [12] | 张沛, 杨马婧, 张放, 谢桦, 刘广一, 李文云, 路学刚, 王珍意, 翟苏巍. 图数据库与图计算在电力系统调度运行应用综述[J]. 中国电力, 2025, 58(3): 119-131. |
| [13] | 高志远, 庄卫金, 李峰, 于芳, 张鸿, 王艳, 夏旻. 调控领域人工智能应用的高复用性验证平台[J]. 中国电力, 2025, 58(3): 142-150. |
| [14] | 姜通海, 王峰, 刘子琪, 单帅杰. 基于改进生成对抗网络的风光气象资源联合场景生成方法[J]. 中国电力, 2025, 58(3): 183-192. |
| [15] | 汤明润, 李若旸, 刘慕然, 程晓钰, 刘铫, 杨淑霞. 电力系统稳态下可再生能源大规模接入量预测[J]. 中国电力, 2025, 58(2): 126-132. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编