中国电力 ›› 2026, Vol. 59 ›› Issue (1): 44-56.DOI: 10.11930/j.issn.1004-9649.202504041

• 能源电力数据要素与人工智能应用 • 上一篇    下一篇

面向极端高温场景的新型电力系统供需平衡能力概率化评估

郑海峰1(), 刘青1(), 姚力1, 张煜1, 邹艺超2, 胡臻达2, 王阳3, 代潭龙3   

  1. 1. 国网能源研究院有限公司,北京 102209
    2. 国网福建省电力有限公司经济技术研究院,福建 福州 350003
    3. 国家气候中心,北京 100081
  • 收稿日期:2025-04-17 修回日期:2025-11-05 发布日期:2026-01-13 出版日期:2026-01-28
  • 作者简介:
    郑海峰(1981),男,硕士,高级工程师(教授级),从事能源电力供需分析预测研究, E-mail:zhenghaifeng@sgeri.sgcc.com.cn
    刘青(1994),男,通信作者,硕士,工程师,从事能源电力供需分析预测研究,E-mail:lq7557@139.com
  • 基金资助:
    国家电网有限公司科技项目(考虑极端天气影响的新型电力系统供需模拟与平衡能力评估关键技术研究,1400-202357631A-3-2-ZN)。

Probabilistic assessment of supply-demand balance capability in new power systems for extreme high temperature scenarios

ZHENG Haifeng1(), LIU Qing1(), YAO Li1, ZHANG Yu1, ZOU Yichao2, HU Zhenda2, WANG Yang3, DAI Tanlong3   

  1. 1. State Grid Energy Research Institute Co., Ltd., Beijing 102209, China
    2. Economic and Technical Research Institute of State Grid Fujian Electric Power Co., Ltd., Fuzhou 350003, China
    3. National Climate Center, Beijing 100081, China
  • Received:2025-04-17 Revised:2025-11-05 Online:2026-01-13 Published:2026-01-28
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (Research on Key Technologies for Supply and Demand Simulation and Balance Capacity Assessment of New Power Systems Considering the Impact of Extreme Weather, No.1400-202357631A-3-2-ZN).

摘要:

全球变暖背景下,极端高温天气发生的频次、强度和影响范围持续扩大,叠加空调保有量持续提升、风光装机占比不断提高,极端高温对新型电力系统电力供需影响日益显著。提出一种新型电力系统供需平衡能力概率化评估方法,应用于中长期电力系统生产模拟。首先,基于三维高斯Copula函数构建风光荷联合场景集,刻画变量间相互关系;然后,结合电力系统生产模拟模型,以运行成本最小为目标,优化机组出力与需求侧资源调用;最后,建立涵盖安全充裕、灵活可控、清洁低碳、经济高效的供需平衡能力评估指标体系,采用层次分析法设置权重,并通过核密度估计生成供需平衡能力概率密度曲线,揭示其概率分布特征,量化不同平衡能力水平的出现可能性。将该方法应用于中国某省,面向2030年、2040年、2050年开展研究,结果表明,新型电力系统供需平衡能力总体提升,主要是灵活可控、清洁低碳等维度指标贡献,其中到2050年该省抽蓄储能利用率提升至34.6%,单位电量碳排放强度降至0.27 kg/(kW·h);安全充裕、经济高效水平有所降低,其中到2050年平均备用率降至7.1%,平均度电成本升至0.56元/(kW·h)。

关键词: 极端高温, 新型电力系统, 供需平衡能力, 概率化评估

Abstract:

Under the background of global warming, the frequency, intensity and impact range of extreme high temperature weather continue to expand. Coupled with the continuous increase in the number of air conditioners and the increasing proportion of installed capacity of wind and solar power, the impact of extreme high temperature on the power supply-demand of new power systems is becoming increasingly significant. A probabilistic assessment method for supply-demand balance capacity of new power systems is proposed and applied to the medium and long-term power system production simulation. Firstly, a set of joint wind-solar-load scenarios is constructed based on a three-dimensional Gaussian Copula function to characterize the relationship between variables. Then, integrated with a power system production simulation model, the dispatch strategies of generation units and the utilization of demand-side resources are optimized aiming at minimizing the operational costs. Finally, an assessment index system for supply-demand balance capability is established, encompassing the dimensions of security & adequacy, flexibility & controllability, cleanliness & low-carbon, and economic efficiency.The analytic hierarchy process (AHP) is employed to set the weights for these indicators, and the kernel density estimation (KDE) is adopted to generate the probability density curve of the supply-demand balance capability, which reveals its probabilistic distribution characteristics and quantifies the likelihood of occurrence for different levels of balance capability. This method is applied to a province in South China to conduct studies for the years 2030, 2040, and 2050. The results indicate an overall enhancement in the supply-demand balance capability of the new power systems, primarily driven by improvements in the flexibility & controllability and cleanliness & low-carbon dimensions. The specific outcomes of the province by 2050 include an increase in the utilization rate of pumped storage to 34.6% and a reduction in the carbon emission intensity per unit of electricity to 0.27 kg/(kW·h). Conversely, a decline is observed in the security & adequacy and economic efficiency dimensions. By 2050, the average reserve margin is projected to decrease to 7.1%, while the average levelized cost of electricity is expected to rise to 0.56 RMB yuan/(kW·h)

Key words: extreme high temperature, new power system, supply-demand balance capability, probabilistic assessment


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?