中国电力 ›› 2025, Vol. 58 ›› Issue (10): 147-162.DOI: 10.11930/j.issn.1004-9649.202503094
邱忠涛1(
), 格根敖其2(
), 贾跃龙3(
), 吴鹏3(
), 张凯2(
), 孙毅2(
), 朱进4(
)
收稿日期:2025-03-26
发布日期:2025-10-23
出版日期:2025-10-28
作者简介:基金资助:
QIU Zhongtao1(
), GEGEN Aoqi2(
), JIA Yuelong3(
), WU Peng3(
), ZHANG Kai2(
), SUN Yi2(
), ZHU Jin4(
)
Received:2025-03-26
Online:2025-10-23
Published:2025-10-28
Supported by:摘要:
构建以新能源为主体的新型电力系统,是实现“双碳”战略目标的关键路径。“十四五”以来,中国电力系统在电源结构、电网形态和技术基础等方面正经历深刻变革,提升新形势下电力供需协同能力迫在眉睫。面向新型电力系统,定义供需协同的基本概念与内涵并系统梳理亟须提升供需协同能力的典型场景;分别从政策、市场、技术等方面,深入剖析影响供需协同的全要素影响因素与内在作用机理;从空间、时间、资源、形态等多重视角深入解构与认知,创新性构建全要素供需协同理论框架模型,旨在为新型电力系统的创新升级提供坚实的理论支撑,助力其高质量发展蓝图的有效绘制。
邱忠涛, 格根敖其, 贾跃龙, 吴鹏, 张凯, 孙毅, 朱进. 新型电力系统供需协同全要素理论框架[J]. 中国电力, 2025, 58(10): 147-162.
QIU Zhongtao, GEGEN Aoqi, JIA Yuelong, WU Peng, ZHANG Kai, SUN Yi, ZHU Jin. All-Factor Theoretical Framework for Supply-Demand Synergy in New-Type Power Systems[J]. Electric Power, 2025, 58(10): 147-162.
| 研究 领域 | 代表性 研究 | 主要研究内容 | 研究方法 | 核心问题 | 关键结论 | |||||
| 供需协同理论 | 文献 [ | 区域供需系统结构 | 系统动力学 | 评估电力供需系统发展状态 | 总体波动稳定,区域差异较大 | |||||
| 供需协同约束下新能源消纳能力 | 综述分析 | 构建新能源消纳能力评估的总体研究框架 | 从电力供需平衡、安全稳定约束和电能质量3个角度评估新能源消纳能力 | |||||||
| 供需双侧协同耦合发展内涵 | 综述分析 | 供需双侧的减碳目标与行动步伐匹配程度 | 提出低碳约束条件下能源供需双侧协同发展的路径方案 | |||||||
| 供需协同认知 | 文献 [ | 供需双侧协同规划 | 有功-无功 联合优化 | 灵活性资源双层优化配置方法 | 有效提升配电网运行灵活性和稳定性 | |||||
| 灵活性供需平衡 | 建模与模拟 计算 | 灵活性供需平衡评价、灵活性供需平衡模拟计算、兼顾不同天气过程的模拟场景构建 | 协调各类差异化资源高效经济地匹配系统灵活性供给和需求是关键 | |||||||
| 供需协同模式 | 文献 [ | 供需协同调度模型 | 主从博弈 | 决策新能源出力最恶劣概率分布下的最优日前调度方案 | 同时协同优化电价政策和负荷曲线 | |||||
| 微电网博弈模型 | 平衡电网的经济效益和物理稳定 | 提出分布式算法与基于共享备用电力的方案 | ||||||||
| 综合需求响应优化策略 | 用户参与综合需求响应不确定性与疲劳性 | 优化综合能源服务商成本与用户效益 | ||||||||
| 孤岛运行供需平衡 | 孤岛微网下供需双侧能源管理 | 提高能源管理效率 | ||||||||
| 多时段耦合实施激励 | 用户和微网运营商双方利益兼顾 | 实现引导用户参与并优化资源配置 | ||||||||
| 供需协同全要素分析视角 | 文献 [ | 供-需双侧的灵活性资源、 智能电网信息化自动化互动化、 电力系统与新能源协调发展 | 综述分析建立指标评估体系 | 对各灵活性资源与电力系统各要素进行定量综合评价 | 新型电力系统供需双侧受到各类要素直接或间接影响 | |||||
| 供需协同全要素分析方法 | 文献 [ | Pearson 相关系数、灰色 关联度、XGBoost机器学习 | 构建影响因 素指标体系 | 探究影响因素并进行预测 | 通过统计学习数据挖掘方法进行分析 | |||||
| 相关性分析法、显著性检验法 | 建立神经网 络预测模型 | 预测模型影响因素输入筛选 | 显著性水平作为输入提高预测可信度 | |||||||
| 解释结构模型 | 建立意识模型并构建矩阵 | 低碳环境下电力需求影响因素筛选 | 基于经验和知识分析对电力需求的影响因素进行定量分析 |
表 1 供需协同理论框架研究现状
Table 1 Current status of research on the theoretical framework for supply-demand synergy
| 研究 领域 | 代表性 研究 | 主要研究内容 | 研究方法 | 核心问题 | 关键结论 | |||||
| 供需协同理论 | 文献 [ | 区域供需系统结构 | 系统动力学 | 评估电力供需系统发展状态 | 总体波动稳定,区域差异较大 | |||||
| 供需协同约束下新能源消纳能力 | 综述分析 | 构建新能源消纳能力评估的总体研究框架 | 从电力供需平衡、安全稳定约束和电能质量3个角度评估新能源消纳能力 | |||||||
| 供需双侧协同耦合发展内涵 | 综述分析 | 供需双侧的减碳目标与行动步伐匹配程度 | 提出低碳约束条件下能源供需双侧协同发展的路径方案 | |||||||
| 供需协同认知 | 文献 [ | 供需双侧协同规划 | 有功-无功 联合优化 | 灵活性资源双层优化配置方法 | 有效提升配电网运行灵活性和稳定性 | |||||
| 灵活性供需平衡 | 建模与模拟 计算 | 灵活性供需平衡评价、灵活性供需平衡模拟计算、兼顾不同天气过程的模拟场景构建 | 协调各类差异化资源高效经济地匹配系统灵活性供给和需求是关键 | |||||||
| 供需协同模式 | 文献 [ | 供需协同调度模型 | 主从博弈 | 决策新能源出力最恶劣概率分布下的最优日前调度方案 | 同时协同优化电价政策和负荷曲线 | |||||
| 微电网博弈模型 | 平衡电网的经济效益和物理稳定 | 提出分布式算法与基于共享备用电力的方案 | ||||||||
| 综合需求响应优化策略 | 用户参与综合需求响应不确定性与疲劳性 | 优化综合能源服务商成本与用户效益 | ||||||||
| 孤岛运行供需平衡 | 孤岛微网下供需双侧能源管理 | 提高能源管理效率 | ||||||||
| 多时段耦合实施激励 | 用户和微网运营商双方利益兼顾 | 实现引导用户参与并优化资源配置 | ||||||||
| 供需协同全要素分析视角 | 文献 [ | 供-需双侧的灵活性资源、 智能电网信息化自动化互动化、 电力系统与新能源协调发展 | 综述分析建立指标评估体系 | 对各灵活性资源与电力系统各要素进行定量综合评价 | 新型电力系统供需双侧受到各类要素直接或间接影响 | |||||
| 供需协同全要素分析方法 | 文献 [ | Pearson 相关系数、灰色 关联度、XGBoost机器学习 | 构建影响因 素指标体系 | 探究影响因素并进行预测 | 通过统计学习数据挖掘方法进行分析 | |||||
| 相关性分析法、显著性检验法 | 建立神经网 络预测模型 | 预测模型影响因素输入筛选 | 显著性水平作为输入提高预测可信度 | |||||||
| 解释结构模型 | 建立意识模型并构建矩阵 | 低碳环境下电力需求影响因素筛选 | 基于经验和知识分析对电力需求的影响因素进行定量分析 |
| 1 | 何伊慧, 管霖, 王彤, 等. 南方电网新型电力系统规划建设的量化评估与分析[J]. 南方电网技术, 2024, 18 (10): 40- 53. |
| HE Yihui, GUAN Lin, WANG Tong, et al. Quantitative evaluation and analysis of planning and construction of the new power system in China southern power grid[J]. Southern Power System Technology, 2024, 18 (10): 40- 53. | |
| 2 | 邱忠涛, 韩新阳, 田鑫, 等. 智慧配电网助力现代化基础设施建设的协同需求和典型场景研究[J]. 供用电, 2024, 41 (6): 47- 54. |
| QIU Zhongtao, HAN Xinyang, TIAN Xin, et al. Research on collaborative needs and typical scenarios of smart distribution network assisting modern infrastructure construction[J]. Distribution & Utilization, 2024, 41 (6): 47- 54. | |
| 3 | 刘俊磊, 刘新苗, 娄源媛, 等. 考虑源荷储不确定性的新型电力系统随机生产模拟方法[J]. 南方电网技术, 2024, 18 (6): 36- 42. |
| LIU Junlei, LIU Xinmiao, LOU Yuanyuan, et al. Stochastic production simulation method for new power system considering uncertainty of source network load and storage[J]. Southern Power System Technology, 2024, 18 (6): 36- 42. | |
| 4 | 黎博, 陈民铀, 钟海旺, 等. 高比例可再生能源新型电力系统长期规划综述[J]. 中国电机工程学报, 2023, 43 (2): 555- 581. |
| LI Bo, CHEN Minyou, ZHONG Haiwang, et al. A review of long-term planning of new power systems with large share of renewable energy[J]. Proceedings of the CSEE, 2023, 43 (2): 555- 581. | |
| 5 |
胡博, 谢开贵, 邵常政, 等. 双碳目标下新型电力系统风险评述: 特征、指标及评估方法[J]. 电力系统自动化, 2023, 47 (5): 1- 15.
DOI |
|
HU Bo, XIE Kaigui, SHAO Changzheng, et al. Commentary on risk of new power system under goals of carbon emission peak and carbon neutrality: characteristics, indices and assessment methods[J]. Automation of Electric Power Systems, 2023, 47 (5): 1- 15.
DOI |
|
| 6 |
CHEN J D, GAO M, MANGLA S K, et al. Effects of technological changes on China's carbon emissions[J]. Technological Forecasting and Social Change, 2020, 153, 119938.
DOI |
| 7 |
ZHANG S, CHEN W Y. China's energy transition pathway in a carbon neutral vision[J]. Engineering, 2022, 14, 64- 76.
DOI |
| 8 |
CHEN F L, WANG M C, PU Z N. The impact of technological innovation on air pollution: firm-level evidence from China[J]. Technological Forecasting and Social Change, 2022, 177, 121521.
DOI |
| 9 | 陈政, 何耿生, 尚楠. 面向碳达峰碳中和的电网碳排放因子改进计算方法[J]. 南方电网技术, 2024, 18 (1): 153- 162. |
| CHEN Zheng, HE Gengsheng, SHANG Nan. Improved calculation method of power grid carbon emission factor for carbon peak and carbon neutrality goals[J]. Southern Power System Technology, 2024, 18 (1): 153- 162. | |
| 10 | 田禹. 我国电力供需系统发展效率评价与驱动效应研究[D]. 北京: 华北电力大学(北京), 2022. |
| TIAN Yu. Research on development efficiency evaluation and driving effect of power supply and demand system in China[D]. Beijing: North China Electric Power University, 2022. | |
| 11 | 文云峰, 杨游航, 邢鹏翔, 等. 多维因素制约下新能源消纳能力评估方法研究综述[J]. 中国电机工程学报, 2024, 44 (1): 127- 147. |
| WEN Yunfeng, YANG Youhang, XING Pengxiang, et al. Review on the new energy accommodation capability evaluation methods considering multi-dimensional factors[J]. Proceedings of the CSEE, 2024, 44 (1): 127- 147. | |
| 12 |
林伯强, 占妍泓, 孙传旺. 面向碳中和的能源供需双侧协同发展研究[J]. 治理研究, 2022, 38 (3): 24- 34, 125.
DOI |
|
LIN Boqiang, ZHAN Yanhong, SUN Chuanwang. A study of the coordinated development of energy supplies and the demand for carbon neutrality[J]. Governance Studies, 2022, 38 (3): 24- 34, 125.
DOI |
|
| 13 | 程杉, 傅桐, 李沣洋, 等. 含高渗透可再生能源的配电网灵活性供需协同规划[J]. 电力系统保护与控制, 2023, 51 (22): 1- 12. |
| CHENG Shan, FU Tong, LI Fengyang, et al. Flexible supply demand collaborative planning for distribution networks with high penetration of renewable energy[J]. Power System Protection and Control, 2023, 51 (22): 1- 12. | |
| 14 | 鲁宗相, 林弋莎, 乔颖, 等. 极高比例可再生能源电力系统的灵活性供需平衡[J]. 电力系统自动化, 2022, 46 (16): 3- 16. |
| LU Zongxiang, LIN Yisha, QIAO Ying, et al. Flexibility supply-demand balance in power system with ultra-high proportion of renewable energy[J]. Automation of Electric Power Systems, 2022, 46 (16): 3- 16. | |
| 15 |
赵晶晶, 朱炯达, 李振坤, 等. 考虑灵活性供需鲁棒平衡的两阶段配电网日内分布式优化调度[J]. 电力系统自动化, 2022, 46 (16): 61- 71.
DOI |
|
ZHAO Jingjing, ZHU Jiongda, LI Zhenkun, et al. Two-stage intraday distributed optimal dispatch for distribution network considering robust balance between flexibility supply and demand[J]. Automation of Electric Power Systems, 2022, 46 (16): 61- 71.
DOI |
|
| 16 |
张虹, 马鸿君, 闫贺, 等. 计及WCVaR评估的微电网供需协同两阶段日前优化调度[J]. 电力系统自动化, 2021, 45 (2): 55- 63.
DOI |
|
ZHANG Hong, MA Hongjun, YAN He, et al. Two-stage day-ahead optimal microgrid scheduling with coordination between supply and demand considering WCVaR assessment[J]. Automation of Electric Power Systems, 2021, 45 (2): 55- 63.
DOI |
|
| 17 |
MAHARJAN S, ZHU Q Y, ZHANG Y, et al. Dependable demand response management in the smart grid: a stackelberg game approach[J]. IEEE Transactions on Smart Grid, 2013, 4 (1): 120- 132.
DOI |
| 18 | 张全明, 崔晓昱, 张笑弟, 等. 计及用户不确定性的多时段耦合需求响应激励优化策略[J]. 中国电机工程学报, 2022, 42 (24): 8844- 8854. |
| ZHANG Quanming, CUI Xiaoyu, ZHANG Xiaodi, et al. Incentive optimization strategy of multi period coupling demand response considering user uncertainty[J]. Proceedings of the CSEE, 2022, 42 (24): 8844- 8854. | |
| 19 | 王巍, 袁泉, 刘春晓, 等. 日前邀约模式下电力需求响应的聚合优化模型与方法[J]. 南方电网技术, 2023, 17 (11): 51- 60. |
| WANG Wei , YUAN Quan , LIU Chunxiao, et al. Aggregation optimization model and method for power demand response based on the day-ahead invitation mode[J]. Southern Power System Technology, 2023, 17 (11): 51- 60. | |
| 20 |
AZZAM S M, ELSHABRAWY T, ASHOUR M. A bi-level framework for supply and demand side energy management in an islanded microgrid[J]. IEEE Transactions on Industrial Informatics, 2023, 19 (1): 220- 231.
DOI |
| 21 |
SZILAGYI E, PETREUS D, PAULESCU M, et al. Cost-effective energy management of an islanded microgrid[J]. Energy Reports, 2023, 10, 4516- 4537.
DOI |
| 22 | 杨运国, 侯健生, 边晓燕, 等. 面向高比例新能源配电网的灵活性资源综合评价[J]. 供用电, 2021, 38 (11): 68- 76. |
| YANG Yunguo, HOU Jiansheng, BIAN Xiaoyan, et al. Comprehensive evaluation of flexible resources for high penetration of renewable energy sources integrated to the distribution network[J]. Distribution & Utilization, 2021, 38 (11): 68- 76. | |
| 23 |
黄震, 宋璇坤, 刘思革, 等. 电网智能化发展评价指标体系及关键指标研究[J]. 供用电, 2016, 33 (2): 43- 47, 42.
DOI |
|
HUANG Zhen, SONG Xuankun, LIU Sige, et al. Study on the evaluation index system and the key indexes of grid intelligence development[J]. Distribution & Utilization, 2016, 33 (2): 43- 47, 42.
DOI |
|
| 24 |
李琼慧, 代红才, 汪晓露. 新能源与智能电网协调发展评价指标体系研究[J]. 中国能源, 2011, 33 (5): 25- 28.
DOI |
|
LI Qionghui, DAI Hongcai, WANG Xiaolu. Study on assessment indicators system of coordinated development between new energy and smart grid[J]. Energy of China, 2011, 33 (5): 25- 28.
DOI |
|
| 25 | 郭创新, 刘祝平, 冯斌, 等. 新型电力系统风险评估研究现状及展望[J]. 高电压技术, 2022, 48 (9): 3394- 3404. |
| GUO Chuangxin, LIU Zhuping, FENG Bin, et al. Research status and prospect of new-type power system risk assessment[J]. High Voltage Engineering, 2022, 48 (9): 3394- 3404. | |
| 26 |
安靖, 张雪超, 张雷, 等. 基于多标签学习的探索性仿真实验因素筛选方法[J]. 指挥控制与仿真, 2023, 45 (6): 134- 140.
DOI |
|
AN Jing, ZHANG Xuechao, ZHANG Lei, et al. Factors screening method of explorative simulation experiment based on multi-label learning[J]. Command Control & Simulation, 2023, 45 (6): 134- 140.
DOI |
|
| 27 | 吴成明, 邢博洋, 李世春. 基于麻雀搜索算法的微电网分层优化调度[J]. 南方电网技术, 2024, 18 (2): 115- 123. |
| WU Chengming, XING Boyang, LI Shichun. Hierarchical optimal dispatch of microgrid based on the sparrow search algorithm[J]. Southern Power System Technology, 2024, 18 (2): 115- 123. | |
| 28 | 麻雪松. 基于Leslie模型和影响因素筛选的中国人口预测研究[D]. 北京: 北京交通大学, 2022. |
| MA Xuesong. Research on Chinese population prediction based on Leslie model and screening of influencing factors[D]. Beijing: Beijing Jiaotong University, 2022. | |
| 29 | 卓映君, 周保荣, 姚文峰, 等. “双碳”目标下南方区域能源电力消费及负荷特性预测[J]. 南方电网技术, 2023, 17 (9): 132- 140. |
| ZHUO Yingjun, ZHOU Baorong, YAO Wenfeng, et al. Prediction of energy and electricity consumption and load characteristics in the southern region under the carbon peak and carbon neutrality target[J]. Southern Power System Technology, 2023, 17 (9): 132- 140. | |
| 30 | 魏茜茜. 基于解释结构模型建筑施工安全风险评价研究[J]. 湖北第二师范学院学报, 2024, 41 (8): 27- 33. |
| WEI Qianqian. Safety risk assessment of building construction based on explanatory structural model[J]. Journal of Hubei University of Education, 2024, 41 (8): 27- 33. | |
| 31 | 于松青, 林盛. 低碳经济下基于解释结构模型的电力需求影响因素分析[J]. 西北工业大学学报(社会科学版), 2013, 33 (4): 22- 27. |
| YU Songqing, LIN Sheng. Analysis of influencing factors on electricity demand based on the interpretive structural modeling approach in a low-carbon economic context[J]. Journal of northwestern polytechnical universtty(social sciences), 2013, 33 (4): 22- 27. | |
| 32 | 张剑云, 李明节. 新能源高渗透的电力系统频率特性分析[J]. 中国电机工程学报, 2020, 40 (11): 3498- 3507. |
| ZHANG Jianyun, LI Mingjie. Analysis of the frequency characteristic of the power systems highly penetrated by new energy generation[J]. Proceedings of the CSEE, 2020, 40 (11): 3498- 3507. | |
| 33 |
杨欣, 么德飞, 施天成, 等. 基于深度学习的电力供需双侧协同优化的研究与应用[J]. 光学与光电技术, 2023, 21 (2): 136- 143.
DOI |
|
YANG Xin, YAO Defei, SHI Tiancheng, et al. Research and application of power supply and demand cooperative optimization based on deep learning[J]. Optics & Optoelectronic Technology, 2023, 21 (2): 136- 143.
DOI |
|
| 34 | 陈明昊, 孙毅, 胡亚杰, 等. 基于纵向联邦强化学习的居民社区综合能源系统协同训练与优化管理方法[J]. 中国电机工程学报, 2022, 42 (15): 5535- 5550. |
| CHEN Minghao, SUN Yi, HU Yajie, et al. The collaborative training and management-optimized method for residential integrated energy system based on vertical federated reinforcement learning[J]. Proceedings of the CSEE, 2022, 42 (15): 5535- 5550. | |
| 35 | 任洪波, 王广涛, 李琦芬, 等. 供需互动视角下区域综合能源系统设备配置与运行策略协同优化研究[J]. 热力发电, 2020, 49 (3): 60- 67. |
| REN Hongbo, WANG Guangtao, LI Qifen, et al. Collaborative optimization of equipment configuration and operation strategy for integrated energy systems based on supply-demand interaction[J]. Thermal Power Generation, 2020, 49 (3): 60- 67. | |
| 36 | 张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42 (8): 2806- 2819. |
| ZHANG Zhigang, KANG Chongqing. Challenges and prospects for constructing the new-type power system towards a carbon neutrality future[J]. Proceedings of the CSEE, 2022, 42 (8): 2806- 2819. | |
| 37 |
舒印彪, 陈国平, 贺静波, 等. 构建以新能源为主体的新型电力系统框架研究[J]. 中国工程科学, 2021, 23 (6): 61- 69.
DOI |
|
SHU Yinbiao, CHEN Guoping, HE Jingbo, et al. Building a new electric power system based on new energy sources[J]. Strategic Study of CAE, 2021, 23 (6): 61- 69.
DOI |
|
| 38 |
孙毅, 单禹钦, 陈明昊, 等. 考虑生命周期与储能损耗的光-储系统低碳运行优化策略[J]. 电力系统自动化, 2025, 49 (12): 60- 68.
DOI |
|
SUN Yi, SHAN Yuqin, CHEN Minghao, et al. Low-carbon operation optimization strategy for photovoltaic-electrical energy storage system considering life cycle and energy storage degradation[J]. Automation of Electric Power Systems, 2025, 49 (12): 60- 68.
DOI |
|
| 39 |
邱忠涛, 金艳鸣, 徐沈智. 全国碳市场扩容下电力平均排放因子选择对高耗能产业的影响分析[J]. 中国电力, 2023, 56 (12): 1- 7.
DOI |
|
QIU Zhongtao, JIN Yanming, XU Shenzhi. Impacts of electricity emission factor selection on high energy-consuming industries with the expanded national carbon market[J]. Electric Power, 2023, 56 (12): 1- 7.
DOI |
|
| 40 | 李晖, 刘栋, 姚丹阳. 面向碳达峰碳中和目标的我国电力系统发展研判[J]. 中国电机工程学报, 2021, 41 (18): 6245- 6259. |
| LI Hui, LIU Dong, YAO Danyang. Analysis and reflection on the development of power system towards the goal of carbon emission peak and carbon neutrality[J]. Proceedings of the CSEE, 2021, 41 (18): 6245- 6259. | |
| 41 | 叶琳浩, 申展, 许峰, 等. 考虑光伏不确定性和时序相关性的分布鲁棒光储协同优化配置方法[J]. 南方电网技术, 2023, 17 (4): 132- 143. |
| YE Linhao, SHEN Zhan, XU Feng, et al. Distributionally robust collaborative optimal allocation method of photovoltaic and energy storage considering photovoltaic uncertainty and temporal correlation[J]. Southern Power System Technology, 2023, 17 (4): 132- 143. | |
| 42 |
路学刚, 谢一工, 胡斌, 等. 面向需求响应市场的柔性负荷调度方法研究[J]. 电力需求侧管理, 2024, 26 (3): 15- 20.
DOI |
|
LU Xuegang, XIE Yigong, HU Bin, et al. Research on flexible load dispatch method for demand response market[J]. Power Demand Side Management, 2024, 26 (3): 15- 20.
DOI |
|
| 43 | 王波, 马富齐, 王红霞. 新型并网主体安全风险辨识的数据特征、关键技术及防控挑战[J]. 南方电网技术, 2025, 19 (7): 15- 29. |
| WANG Bo, MA Fuqi, WANG Hongxia. Data characteristics, key technologies and prevention and control challenges of security risk identification for new grid-connected entities[J]. Southern Power System Technology, 2025, 19 (7): 15- 29. | |
| 44 |
DU E S, JIANG H Y, XIAO J Y, et al. Preliminary analysis of long-term storage requirement in enabling high renewable energy penetration: a case of East Asia[J]. IET Renewable Power Generation, 2021, 15 (6): 1255- 1269.
DOI |
| 45 | 周高锋, 章天晗, 颜拥, 等. 基于生命周期评估的需求响应碳减排量评估方法[J]. 电力自动化设备, 2024, 44 (7): 255- 262, 286. |
| ZHOU Gaofeng, ZHANG Tianhan, YAN Yong, et al. Assessment method of demand response carbon emission reduction based on life cycle assessment[J]. Electric Power Automation Equipment, 2024, 44 (7): 255- 262, 286. | |
| 46 | 李伟, 周天, 董绍光, 等. 考虑多运行场景的城市电网用户侧储能需求评估方法[J]. 浙江电力, 2024, 43 (2): 96- 104. |
| LI Wei, ZHOU Tian, DONG Shaoguang, et al. An assessment method for energy storage demand on user side in urban grids considering multiple operational scenarios[J]. Zhejiang Electric Power, 2024, 43 (2): 96- 104. | |
| 47 |
李宏仲, 叶翔宇. 考虑灵活性供需匹配的电力系统自适应时间尺度调度策略[J]. 电力系统自动化, 2023, 47 (15): 122- 132.
DOI |
|
LI Hongzhong, YE Xiangyu. Adaptive time-scale dispatching strategy for power system considering flexibility supply-demand matching[J]. Automation of Electric Power Systems, 2023, 47 (15): 122- 132.
DOI |
|
| 48 | 姜海洋, 杜尔顺, 马佳豪, 等. 考虑长周期供需不平衡风险的新型电力系统规划方法[J]. 中国电机工程学报, 2024, 44 (15): 5845- 5858. |
| JIANG Haiyang, DU Ershun, MA Jiahao, et al. Power system optimal planning method considering long-term imbalance risk[J]. Proceedings of the CSEE, 2024, 44 (15): 5845- 5858. | |
| 49 | 李雪, 张涵帅, 姜涛, 等. 应对极端冰灾的电力系统多阶段韧性提升策略[J]. 电力自动化设备, 2024, 44 (7): 69- 77. |
| LI Xue, ZHANG Hanshuai, JIANG Tao, et al. Multi-stage resilience enhancement strategy for power system against extreme ice disaster[J]. Electric Power Automation Equipment, 2024, 44 (7): 69- 77. | |
| 50 | 邓韦斯, 孟子超, 王皓怀, 等. 新能源功率预测特性分析及精度提升措施[J]. 南方电网技术, 2023, 17 (2): 11- 23. |
| DENG Weisi, MENG Zichao, WANG Haohuai, et al. Renewable energy power prediction characteristics analyses and accuracy improvement measures[J]. Southern Power System Technology, 2023, 17 (2): 11- 23. | |
| 51 |
卓振宇, 张宁, 康重庆, 等. 面向双碳目标的电力系统规划方案量化归因分析方法[J]. 电力系统自动化, 2023, 47 (2): 1- 14.
DOI |
|
ZHUO Zhenyu, ZHANG Ning, KANG Chongqing, et al. Quantitative attribution analysis method of power system planning scheme for carbon emission peak and carbon neutrality goals[J]. Automation of Electric Power Systems, 2023, 47 (2): 1- 14.
DOI |
|
| 52 |
QIN Z J, CHEN X W, HOU Y H, et al. Coordination of preventive, emergency and restorative dispatch in extreme weather events[J]. IEEE Transactions on Power Systems, 2022, 37 (4): 2624- 2638.
DOI |
| 53 |
ZHUO Z Y, ZHANG N, HOU Q C, et al. Backcasting technical and policy targets for constructing low-carbon power systems[J]. IEEE Transactions on Power Systems, 2022, 37 (6): 4896- 4911.
DOI |
| 54 |
KIRILENKO A, GONG Y Z, CHUNG C Y. A framework for power system operational planning under uncertainty using coherent risk measures[J]. IEEE Transactions on Power Systems, 2021, 36 (5): 4376- 4386.
DOI |
| 55 | 魏旭, 刘东, 高飞, 等. 双碳目标下考虑源网荷储协同优化运行的新型电力系统发电规划[J]. 电网技术, 2023, 47 (9): 3648- 3661. |
| WEI Xu, LIU Dong, GAO Fei, et al. Generation expansion planning of new power system considering collaborative optimal operation of source-grid-load-storage under carbon peaking and carbon neutrality[J]. Power System Technology, 2023, 47 (9): 3648- 3661. | |
| 56 |
卓振宇, 张宁, 谢小荣, 等. 高比例可再生能源电力系统关键技术及发展挑战[J]. 电力系统自动化, 2021, 45 (9): 171- 191.
DOI |
|
ZHUO Zhenyu, ZHANG Ning, XIE Xiaorong, et al. Key technologies and developing challenges of power system with high proportion of renewable energy[J]. Automation of Electric Power Systems, 2021, 45 (9): 171- 191.
DOI |
|
| 57 | 姜婷玉, 陶劲宇, 李亚平, 等. 面向新型电力系统电力平衡的负荷响应管理综述[J]. 电力自动化设备, 2025, 45 (2): 11- 23. |
| JIANG Tingyu, TAO Jinyu, LI Yaping, et al. Review of load response management for power balance in new power system[J]. Electric Power Automation Equipment, 2025, 45 (2): 11- 23. | |
| 58 |
张高, 薛松, 范孟华, 等. 面向我国电力市场的需求响应市场化交易机制设计[J]. 电力建设, 2021, 42 (4): 132- 140.
DOI |
|
ZHANG Gao, XUE Song, FAN Menghua, et al. Design of demand-response market mechanism in accordance with China power market[J]. Electric Power Construction, 2021, 42 (4): 132- 140.
DOI |
|
| 59 | 张勇军, 成润婷, 史训涛, 等. 市场环境下分布式智能电网关键技术与机制研究综述[J]. 电力自动化设备, 2025, 45 (6): 1- 14. |
| ZHANG Yongjun, CHENG Runting, SHI Xuntao, et al. Review of research on key technologies and mechanisms for distributed smart grid in market environment[J]. Electric Power Automation Equipment, 2025, 45 (6): 1- 14. | |
| 60 | 朱斌, 刘东, 刘天元, 等. 边缘计算在电力系统供需互动应用的研究进展与展望[J]. 电网技术, 2024, 48 (10): 4327- 4341. |
| ZHU Bin, LIU Dong, LIU Tianyuan, et al. Research progresses and prospects on application of edge computing in power system supply-demand interaction[J]. Power System Technology, 2024, 48 (10): 4327- 4341. | |
| 61 |
张卫国, 宋杰, 郭明星, 等. 考虑电动汽车充电需求的虚拟电厂负荷均衡管理策略[J]. 电力系统自动化, 2022, 46 (9): 118- 126.
DOI |
|
ZHANG Weiguo, SONG Jie, GUO Mingxing, et al. Load balancing management strategy for virtual power plants considering charging demand of electric vehicles[J]. Automation of Electric Power Systems, 2022, 46 (9): 118- 126.
DOI |
|
| 62 |
包涛, 李昊飞, 余涛, 等. 考虑市场因素的电力系统供需互动混合博弈强化学习算法[J]. 控制理论与应用, 2020, 37 (4): 907- 917.
DOI |
|
BAO Tao, LI Haofei, YU Tao, et al. Mixed game reinforcement learning of supply-demand interaction in power system dis-patch on electricity market[J]. Control Theory & Applications, 2020, 37 (4): 907- 917.
DOI |
|
| 63 |
ROCKAFELLAR R T, URYASEV S. Optimization of conditional value-at-risk[J]. The Journal of Risk, 2000, 2 (3): 21- 41.
DOI |
| 64 |
SABER H, HEIDARABADI H, MOEINI-AGHTAIE M, et al. Expansion planning studies of independent-locally operated battery energy storage systems (BESSs): a CVaR-based study[J]. IEEE Transactions on Sustainable Energy, 2020, 11 (4): 2109- 2118.
DOI |
| 65 |
王珂, 吴峰, 曹若琳, 等. 市场环境下需求响应行为特性及模型研究综述[J]. 电力系统自动化, 2024, 48 (15): 1- 14.
DOI |
|
WANG Ke, WU Feng, CAO Ruolin, et al. Review on characteristics and models of demand response behavior in market environment[J]. Automation of Electric Power Systems, 2024, 48 (15): 1- 14.
DOI |
|
| 66 |
单葆国, 冀星沛, 许传龙, 等. 近期全球能源供需形势分析及中国能源电力保供策略[J]. 中国电力, 2022, 55 (10): 1- 13.
DOI |
|
SHAN Baoguo, JI Xingpei, XU Chuanlong, et al. Recent situation of global energy supply-demand and guarantee strategy of China's energy and power supply[J]. Electric Power, 2022, 55 (10): 1- 13.
DOI |
|
| 67 |
赵莎莎, 袁葆, 安亚刚, 等. 智能电网需求侧用户参与度研究模型[J]. 电网与清洁能源, 2024, 40 (3): 60- 66.
DOI |
|
ZHAO Shasha, YUAN Bao, AN Yagang, et al. A study on the research model of user participation on the demand side of the smart grid[J]. Power System and Clean Energy, 2024, 40 (3): 60- 66.
DOI |
|
| 68 |
阮前途, 叶荣. 保障极端天气下供需安全的新型电力系统电源规划[J]. 电力系统自动化, 2025, 49 (4): 103- 115.
DOI |
|
RUAN Qiantu, YE Rong. Power source planning of new power system for guaranteeing supply-demand security under extreme weather[J]. Automation of Electric Power Systems, 2025, 49 (4): 103- 115.
DOI |
|
| 69 |
陈碧云, 李翠珍, 覃鸿, 等. 考虑网架重构和灾区复电过程的配电网抗台风韧性评估[J]. 电力系统自动化, 2018, 42 (6): 47- 52.
DOI |
|
CHEN Biyun, LI Cuizhen, QIN Hong, et al. Evaluation of typhoon resilience of distribution network considering grid reconstruction and disaster recovery[J]. Automation of Electric Power Systems, 2018, 42 (6): 47- 52.
DOI |
|
| 70 | 王邦彦, 皮俊波, 王秀丽, 等. 天气数据驱动下基于深度主动学习的新型电力系统供需失衡风险快速评估方法[J]. 电网技术, 2024, 48 (10): 4050- 4060. |
| WANG Bangyan, PI Junbo, WANG Xiuli, et al. A fast assessment method for supply-demand imbalance risk of new power systems based on deep active learning driven by weather data[J]. Power System Technology, 2024, 48 (10): 4050- 4060. | |
| 71 |
蒋玮, 吴杰, 冯伟, 等. 日前电力市场不完全信息条件下的电力供需双边博弈模型[J]. 电力系统自动化, 2019, 43 (2): 18- 24, 75.
DOI |
|
JIANG Wei, WU Jie, FENG Wei, et al. Bilateral game model of power supply and demand sides with incomplete information in day-ahead electricity market[J]. Automation of Electric Power Systems, 2019, 43 (2): 18- 24, 75.
DOI |
|
| 72 | 余潇潇, 宋福龙, 李隽, 等. 含高比例新能源电力系统极端天气条件下供电安全性的提升[J]. 现代电力, 2023, 40 (3): 303- 313. |
| YU Xiaoxiao, SONG Fulong, LI Jun, et al. Power supply security improvement of power grid with high proportion of renewable energy under extreme weather events[J]. Modern Electric Power, 2023, 40 (3): 303- 313. | |
| 73 |
孙传旺, 左旭光. 中国新型电力系统发展综合评价体系及区域差异分析[J]. 煤炭经济研究, 2025, 45 (1): 122- 131.
DOI |
|
SUN Chuanwang, ZUO Xuguang. Comprehensive evaluation system for the development of the new electricity system in China and analysis of regional differences[J]. Coal Economic Research, 2025, 45 (1): 122- 131.
DOI |
| [1] | 张宸宇, 喻建瑜, 史明明, 刘瑞煌. 基于构网型储能的新能源微电网电压动态控制性能分析与优化[J]. 中国电力, 2025, 58(9): 115-123. |
| [2] | 周勤勇, 郝绍煦, 董武, 张立波, 张健, 贺海磊, 赵蕾蕾. “十五五”电网规划安全稳定分析关键问题[J]. 中国电力, 2025, 58(9): 138-147. |
| [3] | 吴问足, 王旭辉, 卢苑, 陈婉, 田石金, 陈娴. 基于分形理论的电力现货市场出清电价预测方法[J]. 中国电力, 2025, 58(9): 183-193. |
| [4] | 张楠, 郭庆雷, 杜哲, 王栋, 张岩, 赵靓, 蒋宇. 面向分布式新能源聚合交易的可信合约化交易模型[J]. 中国电力, 2025, 58(9): 205-218. |
| [5] | 谭玲玲, 张文龙, 康志豪, 叶平峰, 高业豪, 张玉敏. 计及惯量响应与一次调频参数优化的新能源基地构网型储能规划[J]. 中国电力, 2025, 58(7): 147-161. |
| [6] | 叶小宁, 王彩霞, 时智勇, 步雨洛, 杨超, 吴思. 国外高比例新能源消纳分析及对中国新能源可持续发展的建议[J]. 中国电力, 2025, 58(6): 137-144. |
| [7] | 秦昆, 渠志江, 韩建伟, 许涛, 高峰, 迟晓莉. 基于可调虚拟阻抗的“柔-储-充”装置电池优化运行策略[J]. 中国电力, 2025, 58(6): 145-155. |
| [8] | 王艳阳, 李建朝, 刘景青, 唐程, 王剑涛, 卢锦玲, 任惠. 电碳耦合机制下多元主体综合成本分析[J]. 中国电力, 2025, 58(6): 180-189. |
| [9] | 叶希, 黄格超, 王曦, 王彦沣, 朱童, 何川, 张瑜祺. 基于信息间隙决策理论的受端电网电压稳定多源协同优化调度[J]. 中国电力, 2025, 58(5): 121-136. |
| [10] | 张睿骁, 梁利, 王定美. 新能源场站快速频率响应分析与高效测试装置设计[J]. 中国电力, 2025, 58(5): 144-151. |
| [11] | 李健, 张钧, 韩新阳, 靳晓凌. 新型电力系统形态量化推演方法的总体框架与功能设计[J]. 中国电力, 2025, 58(3): 1-7, 97. |
| [12] | 张磊, 马晓伟, 王满亮, 陈力, 高丙团. 互联新能源电力系统区内AGC机组分布式协同控制策略[J]. 中国电力, 2025, 58(3): 8-19. |
| [13] | 汪林光, 李旭涛, 任勇, 谢小荣. 基于元启发式算法的新能源电力系统振荡稳定性最差工况搜索方法[J]. 中国电力, 2025, 58(3): 65-72. |
| [14] | 高志远, 庄卫金, 李峰, 于芳, 张鸿, 王艳, 夏旻. 调控领域人工智能应用的高复用性验证平台[J]. 中国电力, 2025, 58(3): 142-150. |
| [15] | 郑永乐, 韦仁博, 冯宇昂, 张艺涵, 崔世常, 武振宇, 蒋小亮, 李慧璇, 艾小猛, 方家琨. 农村新型电力系统精细化时序生产模拟方法[J]. 中国电力, 2025, 58(10): 71-81. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编