中国电力 ›› 2025, Vol. 58 ›› Issue (9): 183-193.DOI: 10.11930/j.issn.1004-9649.202502005

• 电力市场 • 上一篇    下一篇

基于分形理论的电力现货市场出清电价预测方法

吴问足1(), 王旭辉2(), 卢苑3(), 陈婉1, 田石金4, 陈娴5   

  1. 1. 南方电网电力调度控制中心,广东 广州 510000
    2. 南方电网云南电力调度控制中心,云南 昆明 650000
    3. 广东电力交易中心有限责任公司,广东 广州 510699
    4. 贵州电网有限责任公司电力调度控制中心,贵州 贵阳 550000
    5. 广东电网公司广州供电局,广东 广州 510620
  • 收稿日期:2025-02-07 发布日期:2025-09-26 出版日期:2025-09-28
  • 作者简介:
    吴问足(1993),男,通信作者,硕士,工程师,从事电力市场设计与运营,E-mail:Wuwenzu_1993@163.com
    王旭辉(1994),男,硕士,工程师,从事电力市场设计与运营,E-mail:18468048370@163.com
    卢 苑(1994),女,硕士,工程师,从事电力市场设计与运营,E-mail:luyuan941227@163.com
  • 基金资助:
    国家重点研发计划资助项目(2024YFB2409000);南方电网电力调度控制中心科技项目(0005KK52220042)。

A Forecast Method for Electricity Spot Market Clearing Prices Based on Fractal Theory

WU Wenzu1(), WANG Xuhui2(), LU Yuan3(), CHEN Wan1, TIAN Shijin4, CHEN Xian5   

  1. 1. Power Dispatching and Control Center, China Southern Power Grid, Guangzhou 510000, China
    2. Yunnan Power Dispatching and Control Center, China Southern Power Grid, Kunming 650000, China
    3. Guangdong Power Exchange Center Co., Ltd., Guangzhou 510699, China
    4. Electric Power Dispatching Control Center of Guizhou Power Grid Co., Ltd., Guiyang 550000, China
    5. Guangzhou Power Supply Bureau, Guangdong Power Grid Co., Ltd., Guangzhou 510620, China
  • Received:2025-02-07 Online:2025-09-26 Published:2025-09-28
  • Supported by:
    This work is supported by National Key Research and Development Program of China (No.2024YFB2409000), Science and Technology Project of Southern Power Grid Power Dispatching and Control Center (No.0005KK52220042).

摘要:

针对高比例新能源接入下电力现货市场出清电价的复杂波动特性,提出一种基于分形理论的出清电价预测方法。从单重分形与多重分形2个维度分析出清电价的波动特征,并构建相应的预测模型。单重分形预测方法通过计算hurst指数和盒维数,量化出清电价的长期记忆性和自相似性;多重分形预测方法通过相似模式匹配,精准应对新能源出力突变引发的局部波动异常。通过对5个地区的出清电价数据进行验证,结果表明,所提方法相比传统的“ARIMA+神经网络”方法,最大误差从43.95%降至8.41%,预测精度显著提升。进一步的适用性场景分析表明,当出清电价的hurst指数较大时,考虑单重分形特征的预测方法适用性较高;而当多重分形特征显著时,考虑多重分形特征的预测方法适用性较高。

关键词: 新能源, 现货市场, 出清电价, 分形理论, 单重分形, 多重分形

Abstract:

To address the complex fluctuations of electricity spot market clearing prices with high proportion integration of new energy, this paper proposes a clearing price prediction method based on fractal theory. Firstly, the clearing price fluctuations are analyzed from monofractal and multifractal dimensions, and corresponding prediction models are constructed. Secondly, based on the monofractal prediction method, the long-term memory and self-similarity of clearing prices are quantified using the Hurst indices and box dimension; based on multifractal method, the local fluctuation anomalies caused by sudden changes in new energy output are effectively captured via pattern matching. Thirdly, the proposed method is verified with clearing price data from five regions, which shows that, compared to the traditional "ARIMA + neural network" approach, the proposed method significantly improves the prediction accuracy, with the maximum error decreasing from 43.95% to 8.41%. In-depth applicability scenario analysis indicates that, when the Hurst index is large, the monofractal-based prediction method is more applicable; when multifractal features dominate, the multifractal-based prediction method is preferable.

Key words: new energy, spot market, clearing electricity price, fractal theory, monofractal, multifractal


AI


AI小编
您好!我是《中国电力》AI小编,有什么可以帮您的吗?