中国电力 ›› 2025, Vol. 58 ›› Issue (11): 62-71, 87.DOI: 10.11930/j.issn.1004-9649.202504063
• 高比例新能源区域综合能源系统调度、控制与可靠性研究 • 上一篇 下一篇
曹书仪1(
), 陶洪铸2, 王强3, 礼晓飞4, 王蕾报5, 郭森1(
)
收稿日期:2025-04-25
修回日期:2025-05-09
发布日期:2025-12-01
出版日期:2025-11-28
作者简介:基金资助:
CAO Shuyi1(
), TAO Hongzhu2, WANG Qiang3, LI Xiaofei4, WANG Leibao5, GUO Sen1(
)
Received:2025-04-25
Revised:2025-05-09
Online:2025-12-01
Published:2025-11-28
Supported by:摘要:
合理评估灵活性资源的调节能力,对于提升电力系统的灵活性以及建设高比例新能源接入的新型电力系统具有重要意义。从经济性和技术性2个维度,提出了新能源电力系统灵活性资源调节能力评价指标体系,基于熵权法和MARCOS相结合的混合多属性决策方法构建了新能源电力系统灵活性资源调节能力综合评价模型,并对4种典型的灵活性资源进行了评估,结果表明:爬坡速率、时间尺度调节能力、使用年限和机组调节范围是影响灵活性资源调节能力的关键因素;电化学储能的调节能力最优,气电调节能力最差。实证研究与敏感性分析验证了该模型的有效性和可行性。
曹书仪, 陶洪铸, 王强, 礼晓飞, 王蕾报, 郭森. 基于混合多属性决策方法的新能源电力系统灵活性资源调节能力综合评价[J]. 中国电力, 2025, 58(11): 62-71, 87.
CAO Shuyi, TAO Hongzhu, WANG Qiang, LI Xiaofei, WANG Leibao, GUO Sen. Comprehensive Evaluation of Flexibility Resource Regulation Capability in New Energy Power Systems Based on Hybrid Multi-attribute Decision-making Methods[J]. Electric Power, 2025, 58(11): 62-71, 87.
| 目标层 | 一级指标 | 二级指标 | 类型 | 编号 | ||||
| 灵活性资 源调节能力 | 经济性 指标 | 新建或改建投资成本 | 负向指标 | S1 | ||||
| 可变成本 | 负向指标 | S2 | ||||||
| 使用年限 | 正向指标 | S3 | ||||||
| 技术性 指标 | 爬坡速率 | 正向指标 | S4 | |||||
| 启停时间 | 负向指标 | S5 | ||||||
| 机组调节范围 | 正向指标 | S6 | ||||||
| 调节时间尺度 | 正向指标 | S7 |
表 1 电力系统灵活性资源调节能力综合评价指标
Table 1 Comprehensive evaluation indicators for regulation capability of flexibility resources in power systems
| 目标层 | 一级指标 | 二级指标 | 类型 | 编号 | ||||
| 灵活性资 源调节能力 | 经济性 指标 | 新建或改建投资成本 | 负向指标 | S1 | ||||
| 可变成本 | 负向指标 | S2 | ||||||
| 使用年限 | 正向指标 | S3 | ||||||
| 技术性 指标 | 爬坡速率 | 正向指标 | S4 | |||||
| 启停时间 | 负向指标 | S5 | ||||||
| 机组调节范围 | 正向指标 | S6 | ||||||
| 调节时间尺度 | 正向指标 | S7 |
| 指标 | 灵活性火电 | 气电 | 抽水蓄能 | 电化学储能 | ||||
| 固定成本/(元·kW–1) | 650 | |||||||
| 可变成本/(元·(kW·h)–1) | ||||||||
| 使用年限/年 | 20 | 30 | 80 | 12 | ||||
| 爬坡速率/(Pn·min–1) | 5% | 8% | 20% | 100% | ||||
| 启停时间/h | 4.500 | 2.000 | 0.420 | 0.017 | ||||
| 机组调节范围/% | 70 | 80 | 200 | 200 | ||||
| 时间尺度调节能力 | 2 | 1 | 2 | 1 |
表 2 灵活性资源评价指标初始数据
Table 2 Initial data of flexibility resource evaluation indicators
| 指标 | 灵活性火电 | 气电 | 抽水蓄能 | 电化学储能 | ||||
| 固定成本/(元·kW–1) | 650 | |||||||
| 可变成本/(元·(kW·h)–1) | ||||||||
| 使用年限/年 | 20 | 30 | 80 | 12 | ||||
| 爬坡速率/(Pn·min–1) | 5% | 8% | 20% | 100% | ||||
| 启停时间/h | 4.500 | 2.000 | 0.420 | 0.017 | ||||
| 机组调节范围/% | 70 | 80 | 200 | 200 | ||||
| 时间尺度调节能力 | 2 | 1 | 2 | 1 |
| 指标 | 灵活性火电 | 气电 | 抽水蓄能 | 电化学储能 | ||||
| 固定成本 | ||||||||
| 可变成本 | ||||||||
| 使用年限 | ||||||||
| 爬坡速率 | ||||||||
| 启停时间 | ||||||||
| 机组调节范围 | ||||||||
| 调节时间尺度 |
表 3 灵活性资源指标归一化
Table 3 Normalization of flexibility resource indicators
| 指标 | 灵活性火电 | 气电 | 抽水蓄能 | 电化学储能 | ||||
| 固定成本 | ||||||||
| 可变成本 | ||||||||
| 使用年限 | ||||||||
| 爬坡速率 | ||||||||
| 启停时间 | ||||||||
| 机组调节范围 | ||||||||
| 调节时间尺度 |
| 编号 | 指标 | 熵值 | 权重 | 排序 | ||||
| S1 | 固定成本 | 6 | ||||||
| S2 | 可变成本 | 7 | ||||||
| S3 | 使用年限 | 3 | ||||||
| S4 | 爬坡速率 | 1 | ||||||
| S5 | 启停时间 | 5 | ||||||
| S6 | 机组调节范围 | 4 | ||||||
| S7 | 调节时间尺度 | 2 |
表 4 灵活性资源调节能力指标的权重及排序
Table 4 Weights and rankings of flexibility resource regulation capability indicators
| 编号 | 指标 | 熵值 | 权重 | 排序 | ||||
| S1 | 固定成本 | 6 | ||||||
| S2 | 可变成本 | 7 | ||||||
| S3 | 使用年限 | 3 | ||||||
| S4 | 爬坡速率 | 1 | ||||||
| S5 | 启停时间 | 5 | ||||||
| S6 | 机组调节范围 | 4 | ||||||
| S7 | 调节时间尺度 | 2 |
| 方案 | K+ | K– | f(Ki) | 排序 | ||||
| 灵活性火电 | 0.456 | 2.058 | 0.438 | 3 | ||||
| 气电 | 0.285 | 1.286 | 0.274 | 4 | ||||
| 抽水蓄能 | 0.634 | 2.862 | 0.610 | 2 | ||||
| 电化学储能 | 0.702 | 3.169 | 0.675 | 1 |
表 5 基于MARCOS模型的灵活性资源调节能力评价结果
Table 5 Evaluation results of flexibility resource regulation capability based on the MARCOS model
| 方案 | K+ | K– | f(Ki) | 排序 | ||||
| 灵活性火电 | 0.456 | 2.058 | 0.438 | 3 | ||||
| 气电 | 0.285 | 1.286 | 0.274 | 4 | ||||
| 抽水蓄能 | 0.634 | 2.862 | 0.610 | 2 | ||||
| 电化学储能 | 0.702 | 3.169 | 0.675 | 1 |
| 1 | 孙怡文, 邢海军, 施怡沁, 等. 新型电力系统多时间尺度充裕性评估及量化分析[J]. 智慧电力, 2025, 53 (6): 35- 42. |
| SUN Yiwen, XING Haijun, SHI Yiqin, et al. Multi-time scale adequacy assessment and quantitative analysis of new-type electric power systems[J]. Smart Power, 2025, 53 (6): 35- 42. | |
| 2 | 张爱军, 刘石川, 慕腾, 等. 新能源发电富集地区输电系统规划方案的综合评价[J]. 智慧电力, 2025, 53 (2): 16- 24. |
| ZHANG Aijun, LIU Shichuan, MU Teng, et al. Comprehensive evaluation of transmission system planning schemes in renewable energy generation enrichment region[J]. Smart Power, 2025, 53 (2): 16- 24. | |
| 3 | 董昱, 孙大雁, 许丹, 等. 新型电力系统电力电量平衡的挑战、应对与展望[J]. 中国电机工程学报, 2025, 45 (6): 2039- 2057. |
| DONG Yu, SUN Dayan, XU Dan, et al. Challenges, response and prospects for power balance in new power systems[J]. Proceedings of the CSEE, 2025, 45 (6): 2039- 2057. | |
| 4 | 张凯, 袁家海, 丁保迪, 等. 新型电力系统灵活性资源提升效益评估[J]. 气候变化研究进展, 2024, 20 (3): 316- 326. |
| ZHANG Kai, YUAN Jiahai, DING Baodi, et al. Evaluation of flexibility enhancement benefits for the new power system[J]. Climate Change Research, 2024, 20 (3): 316- 326. | |
| 5 |
ZHANG Y Q, CHEN Z W, ZHOU J H, et al. Reliability analysis of power system considering flexibility resources[J]. Journal of Physics: Conference Series, 2023, 2532 (1): 012011.
DOI |
| 6 |
AKRAMI A, DOOSTIZADEH M, AMINIFAR F. Power system flexibility: an overview of emergence to evolution[J]. Journal of Modern Power Systems and Clean Energy, 2019, 7 (5): 987- 1007.
DOI |
| 7 |
GHARIBVAND H, GHAREHPETIAN G B, ANVARI-MOGHADDAM A. A survey on microgrid flexibility resources, evaluation metrics and energy storage effects[J]. Renewable and Sustainable Energy Reviews, 2024, 201, 114632.
DOI |
| 8 | 鲁宗相, 李海波, 乔颖. 高比例可再生能源并网的电力系统灵活性评价与平衡机理[J]. 中国电机工程学报, 2017, 37 (1): 9- 20. |
| LU Zongxiang, LI Haibo, QIAO Ying. Flexibility evaluation and supply/demand balance principle of power system with high-penetration renewable electricity[J]. Proceedings of the CSEE, 2017, 37 (1): 9- 20. | |
| 9 | MA J J, LIU Y K, ZHANG S H, et al. Comprehensive probabilistic assessment on capacity adequacy and flexibility of generation resources[J]. International Journal of Electrical Power & Energy Systems, 2023, 145, 108677. |
| 10 |
LANNOYE E, FLYNN D, O'MALLEY M. Evaluation of power system flexibility[J]. IEEE Transactions on Power Systems, 2012, 27 (2): 922- 931.
DOI |
| 11 | 杨策, 孙伟卿, 韩冬. 考虑新能源消纳能力的电力系统灵活性评估方法[J]. 电网技术, 2023, 47 (1): 338- 349. |
| YANG Ce, SUN Weiqing, HAN Dong. Power system flexibility evaluation considering renewable energy accommodation[J]. Power System Technology, 2023, 47 (1): 338- 349. | |
| 12 | 周策, 闫俊, 王浩霖, 等. 火电机组调节能力在线评估技术应用分析[J]. 山西电力, 2023 (1): 61- 64. |
| ZHOU Ce, YAN Jun, WANG Haolin, et al. Application analysis of on-line evaluation technology for regulating capacity of thermal power units[J]. Shanxi Electric Power, 2023 (1): 61- 64. | |
| 13 | 施涛, 司学振, 饶宇飞, 等. 考虑聚合效应的多点分布式储能系统灵活性评价方法研究[J]. 电网与清洁能源, 2019, 35 (12): 67- 73. |
| SHI Tao, SI Xuezhen, RAO Yufei, et al. Research on flexibility evaluation method of multi-point distributed energy storage system considering aggregation effect[J]. Power System and Clean Energy, 2019, 35 (12): 67- 73. | |
| 14 | 黄鸣宇, 王鹏宇, 张庆平, 等. 计及调节性能及经济性的需求响应资源参与电网调频综合评价[J]. 武汉大学学报(工学版), 2022, 55 (8): 822- 832. |
| HUANG Mingyu, WANG Pengyu, ZHANG Qingping, et al. Comprehensive evaluation of power grid frequency regulation with the participation of demand response resources in consideration of control performance and economy[J]. Engineering Journal of Wuhan University, 2022, 55 (8): 822- 832. | |
| 15 | 王志杰, 陈文, 朱晓星, 等. 基于数据驱动的火电机组灵活性综合评价方法及应用[J]. 现代电力, 2024, 41 (4): 667- 672. |
| WANG Zhijie, CHEN Wen, ZHU Xiaoxing, et al. Comprehensive evaluation method for thermal power unit flexibility based on data-driven and its application[J]. Modern Electric Power, 2024, 41 (4): 667- 672. | |
| 16 | 董军, 彭诗程, 包阿茹汗, 等. 新型电力系统火电综合价值分析与评估[J]. 重庆理工大学学报(自然科学), 2022, 36 (12): 259- 268. |
| DONG Jun, PENG Shicheng, BAO Aruhan, et al. Analysis and evaluation of comprehensive value of thermal power in the new power system[J]. Journal of Chongqing University of Technology (Natural Science), 2022, 36 (12): 259- 268. | |
| 17 | 王敏, 邹婕, 王惠琳, 等. 基于改进的AHP-CRITIC-MARCOS配电网设备风险评估方法[J]. 电力系统保护与控制, 2023, 51 (3): 164- 172. |
| WANG Min, ZOU Jie, WANG Huilin, et al. Improved AHP-CRITIC-MARCOS-based risk assessment method for distribution network equipment[J]. Power System Protection and Control, 2023, 51 (3): 164- 172. | |
| 18 | 陈星彤, 张宁, 王轶楠, 等. 基于混合赋权和MARCOS模型的低碳园区综合效益评价研究[J]. 智慧电力, 2024, 52 (5): 23- 30. |
| CHEN Xingtong, ZHANG Ning, WANG Yinan, et al. Comprehensive benefit evaluation of low-carbon industrial parks based on combination weighting and MARCOS model[J]. Smart Power, 2024, 52 (5): 23- 30. | |
| 19 | 李勇, 吴含欣, 李婵虓, 等. 考虑多维气象指标的配电网短期负荷预测[J]. 智慧电力, 2025, 53 (6): 116- 123. |
| LI Yong, WU Hanxin, LI Chanxiao, et al. Short-term load forecasting for distribution networks considering multidimensional meteorological indicators[J]. Smart Power, 2025, 53 (6): 116- 123. | |
| 20 | 章穗, 张梅, 迟国泰. 基于熵权法的科学技术评价模型及其实证研究[J]. 管理学报, 2010, 7 (1): 34- 42. |
| ZHANG Sui, ZHANG Mei, CHI Guotai. The science and technology evaluation model based on entropy weight and empirical research during the 10th five-year of China[J]. Chinese Journal of Management, 2010, 7 (1): 34- 42. | |
| 21 | 付忠广, 刘炳含, 刘璐, 等. 融合熵权TOPSIS法与灰色关联度法的火电机组综合评价方法[J]. 华北电力大学学报(自然科学版), 2018, 45 (6): 68- 75,83. |
| FU Zhongguang, LIU Binghan, LIU Lu, et al. Comprehensive evaluation method of thermal power unit on basis of entropy weight TOPSIS method and grey relational grade method[J]. Journal of North China Electric Power University (Natural Science Edition), 2018, 45 (6): 68- 75,83. | |
| 22 | 艾欣, 秦珺晗, 胡寰宇, 等. 基于最优最劣法-熵权-逼近理想解排序法的电网安全与效益综合评价[J]. 现代电力, 2021, 38 (1): 60- 68. |
| AI Xin, QIN Junhan, HU Huanyu, et al. Comprehensive evaluation of power grid security and benefit based on BWM entropy weight TOPSIS method[J]. Modern Electric Power, 2021, 38 (1): 60- 68. | |
| 23 | 郭杉, 田苗, 田智, 等. 基于改进TOPSIS模型的配电台区电压质量评估方法[J]. 内蒙古电力技术, 2023, 41 (1): 45- 51. |
| GUO Shan, TIAN Miao, TIAN Zhi, et al. Evaluation method of voltage quality in distribution station area based on improved TOPSIS model[J]. Inner Mongolia Electric Power, 2023, 41 (1): 45- 51. | |
| 24 | 贾开华, 于云霞, 范秀波, 等. 基于AHP-EWM综合赋权和TOPSIS法的多能互补系统综合评价[J]. 中国电力, 2023, 56 (7): 228- 238. |
| JIA Kaihua, YU Yunxia, FAN Xiubo, et al. Multi-criteria comprehensive evaluation of multi-energy complementary system based on AHP-EWM and TOPSIS method[J]. Electric Power, 2023, 56 (7): 228- 238. | |
| 25 | 赵源上, 林伟芳. 基于皮尔逊相关系数融合密度峰值和熵权法典型场景研究[J]. 中国电力, 2023, 56 (5): 193- 202. |
| ZHAO Yuanshang, LIN Weifang. Research on typical scenarios based on fusion density peak value and entropy weight method of Pearson's correlation coefficient[J]. Electric Power, 2023, 56 (5): 193- 202. | |
| 26 | STEVIĆ Ž, PAMUČAR D, PUŠKA A, et al. Sustainable supplier selection in healthcare industries using a new MCDM method: Measurement of alternatives and ranking according to COmpromise solution (MARCOS)[J]. Computers & Industrial Engineering, 2020, 140, 106231. |
| 27 | 梁小侠, 谢军, 田永川, 等. 基于组合权重和改进的MARCOS配电网设备风险评估方法[J]. 电工技术, 2024 (5): 117- 121. |
| LIANG Xiaoxia, XIE Jun, TIAN Yongchuan, et al. Assessment of distribution network equipment risks based on combined weighting and modified MARCOS[J]. Electric Engineering, 2024 (5): 117- 121. | |
| 28 | 许宗鑫, 崔杨, 岳飞, 等. 考虑等效寿命损耗及多维度效益的电网侧储能系统容量优化配置[J]. 东北电力大学学报, 2025, 45 (1): 73- 82. |
| XU Zongxin, CUI Yang, YUE Fei, et al. Optimal capacity configuration of grid-side energy storage system considering equivalent life loss and multi-dimensional benefits[J]. Journal of Northeast Electric Power University, 2025, 45 (1): 73- 82. | |
| 29 | 林毅, 林威, 吴威, 等. 电化学储能和抽水蓄能电站参与多市场联合运行价值分析[J]. 中国电力, 2023, 56 (7): 175- 185. |
| LIN Yi, LIN Wei, WU Wei, et al. Analysis on operation value of electrochemical energy storage and pumped storage participating in a joint market[J]. Electric Power, 2023, 56 (7): 175- 185. | |
| 30 |
徐若晨, 张江涛, 刘明义, 等. 电化学储能及抽水蓄能全生命周期度电成本分析[J]. 电工电能新技术, 2021, 40 (12): 10- 18.
DOI |
|
XU Ruochen, ZHANG Jiangtao, LIU Mingyi, et al. Analysis of life cycle cost of electrochemical energy storage and pumped storage[J]. Advanced Technology of Electrical Engineering and Energy, 2021, 40 (12): 10- 18.
DOI |
|
| 31 | 文军, 刘楠, 裴杰, 等. 储能技术全生命周期度电成本分析[J]. 热力发电, 2021, 50 (8): 24- 29. |
| WEN Jun, LIU Nan, PEI Jie, et al. Life cycle cost analysis for energy storage technology[J]. Thermal Power Generation, 2021, 50 (8): 24- 29. | |
| 32 | 张大海, 孙锴, 史一茹, 等. 考虑灵活资源及模数驱动方法的电力系统调度方法综述[J]. 高电压技术, 2024, 50 (1): 42- 54. |
| ZHANG Dahai, SUN Kai, SHI Yiru, et al. Overview of power system dispatching methods considering flexible resources and model-data driven[J]. High Voltage Engineering, 2024, 50 (1): 42- 54. | |
| 33 | 冷仙, 曾源, 周键, 等. 基于熵权TOPSIS法的西南自然保护区景观保护成效评价[J]. 生态学报, 2023, 43 (3): 1040- 1053. |
| LENG Xian, ZENG Yuan, ZHOU Jian, et al. Landscape conservation effectiveness assessment of nature reserves based on entropy weight-TOPSIS in Southwest China[J]. Acta Ecologica Sinica, 2023, 43 (3): 1040- 1053. | |
| 34 | 张家明, 赵迪斐, 郭英海, 等. 基于模糊变异熵权法的页岩气藏多参数评价: 以四川盆地武隆地区F-2井为例[J]. 河南理工大学学报(自然科学版), 2024, 43 (6): 57- 68, 81. |
| ZHANG Jiaming, ZHAO Difei, GUO Yinghai, et al. Multiple parameter evaluation of shale gas reservoirs based on a fuzzy entropy weight and coefficient variation method: a case of well F-2 in Wulong Area, Sichuan Basin[J]. Journal of Henan Polytechnic University (Natural Science), 2024, 43 (6): 57- 68, 81. | |
| 35 | 李梓嘉, 周佳, 彭方旭. 基于熵权TOPSIS法的抽水蓄能电站与光伏配套开发综合评价[J]. 水电能源科学, 2025, 43 (3): 205- 209, 195. |
| LI Zijia, ZHOU Jia, PENG Fangxu. Comprehensive evaluation of integrated development of pumped storage power stations and photovoltaic systems based on entropy weight TOPSIS method[J]. Water Resources and Power, 2025, 43 (3): 205- 209, 195. |
| [1] | 王宣元, 张玮, 李长宇, 谢欢, 郭庆来, 王彬, 张宇谦. 考虑随机性的主动配电网有功无功可行域计算方法[J]. 中国电力, 2025, 58(4): 182-192. |
| [2] | 章枫, 樊恒建, 邓晖, 房乐, 周子青, 李知艺. 基于数学形态学的电力系统灵活调节能力充裕度分析[J]. 中国电力, 2025, 58(3): 43-54. |
| [3] | 赖业宁, 孙仲卿, 陆志平, 刘沁. 考虑储能资源聚合参与的电网优化运行与韧性提升策略[J]. 中国电力, 2025, 58(2): 57-65. |
| [4] | 覃海, 陈胜, 张洪略, 夏天, 马覃峰, 段展宇, 颜伟. 并网光伏电站关口无功调节能力的分时段等值方法[J]. 中国电力, 2024, 57(2): 27-33. |
| [5] | 仪忠凯, 侯朗博, 徐英, 吴永峰, 李志民, 吴俊飞, 冯腾, 韩柳. 市场环境下灵活性资源虚拟电厂聚合调控关键技术综述[J]. 中国电力, 2024, 57(12): 82-96. |
| [6] | 许竞, 赵铁军, 高小刚, 叶鞠, 孙玲玲. 高比例新能源电力系统调节资源灵活性不足风险分析[J]. 中国电力, 2024, 57(11): 129-138. |
| [7] | 张俊成, 黎敏, 刘志文, 谭靖, 陶毅刚, 罗天禄. 配电网用户侧多类型柔性资源调节能力评估方法[J]. 中国电力, 2023, 56(9): 96-103,119. |
| [8] | 贾开华, 于云霞, 范秀波, 李茂轩, 王东, 唐翠翠, 冀章. 基于AHP-EWM综合赋权和TOPSIS法的多能互补系统综合评价[J]. 中国电力, 2023, 56(7): 228-238. |
| [9] | 贾巍, 雷才嘉, 方兵华, 刘涌. 供电分区场景下基于数据驱动的负荷密度综合评估及预测方法[J]. 中国电力, 2023, 56(6): 71-81. |
| [10] | 赵源上, 林伟芳. 基于皮尔逊相关系数融合密度峰值和熵权法典型场景研究[J]. 中国电力, 2023, 56(5): 193-202. |
| [11] | 蒋棹骏, 向月, 谈竹奎, 郭咏涛, 王扬, 周科. 计及需求响应的高比例清洁能源园区储能容量优化配置[J]. 中国电力, 2023, 56(12): 147-155, 163. |
| [12] | 艾欣, 徐立敏. 考虑需求侧灵活性资源的区域电能共享市场模型[J]. 中国电力, 2022, 55(6): 53-64. |
| [13] | 赵洪山, 李静璇. 基于PSR和改进灰色TOPSIS的园区客户能效评估模型[J]. 中国电力, 2022, 55(3): 203-212. |
| [14] | 方彤, 蒋东方, 杨洋, 袁铁江. 基于NSGA-II和熵权法的氢综合能源系统商业运营模式[J]. 中国电力, 2022, 55(1): 110-118. |
| [15] | 熊小萍, 郝邵磊, 孙帝, 林光阳, 李航. 基于改进蜂群算法的独立二次一体化中心优化选址策略[J]. 中国电力, 2021, 54(9): 1-8. |
| 阅读次数 | ||||||
|
全文 |
|
|||||
|
摘要 |
|
|||||


AI小编