中国电力 ›› 2025, Vol. 58 ›› Issue (2): 57-65.DOI: 10.11930/j.issn.1004-9649.202402073
• 面向智慧低碳发展的城镇分布式灵活资源建模与运行决策研究 • 上一篇 下一篇
收稿日期:
2024-02-29
出版日期:
2025-02-28
发布日期:
2025-02-25
作者简介:
赖业宁(1975—),男,博士,高级工程师,从事电力安全稳定分析与控制、新能源并网稳控分析及控制技术研究,E-mail:laiyening@sgepri.sgcc.com.cn基金资助:
Yening LAI1(), Zhongqing SUN1(
), Zhiping LU2, Qin LIU2
Received:
2024-02-29
Online:
2025-02-28
Published:
2025-02-25
Supported by:
摘要:
极端天气给新型电力系统的建设与运行带来诸多挑战,电力系统灵活性资源的不断丰富给了电网应对极端天气的新思路。考虑极端条件下储能等资源聚合参与电网负荷恢复的场景,研究了资源聚合参与电网韧性提升的策略方法。首先,基于储能等资源自身的运行状态,提出了资源剩余调节能力模型。然后,构建了计及资源剩余调节能力的资源聚合调控模型,并通过“域”刻画资源聚合体的剩余调节能力与运行功率的关联关系,进一步构建了面向“灾前-灾中-灾后”全阶段的电网优化运行与韧性提升模型。最后,通过算例分析,验证了该策略对电网韧性的提升效果。
赖业宁, 孙仲卿, 陆志平, 刘沁. 考虑储能资源聚合参与的电网优化运行与韧性提升策略[J]. 中国电力, 2025, 58(2): 57-65.
Yening LAI, Zhongqing SUN, Zhiping LU, Qin LIU. Power Grid Optimization Operation and Resilience Improvement Strategy Considering the Participation of Energy Storage Resource Aggregation[J]. Electric Power, 2025, 58(2): 57-65.
编号 | 节点 | Pmin/MW | Pmax/MW | PC/(MW·15 min–1) | 功率因数 | |||||
R_1 | 13 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | |||||
28 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
R_2 | 8 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | |||||
13 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
19 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
24 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
28 | 0.1 | 0.5 | 0.2 | –0.95~0.95 |
表 1 资源聚合体内的MT配置
Table 1 MT configuration within resource aggregate
编号 | 节点 | Pmin/MW | Pmax/MW | PC/(MW·15 min–1) | 功率因数 | |||||
R_1 | 13 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | |||||
28 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
R_2 | 8 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | |||||
13 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
19 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
24 | 0.1 | 0.5 | 0.2 | –0.95~0.95 | ||||||
28 | 0.1 | 0.5 | 0.2 | –0.95~0.95 |
编号 | 节点 | Pmax/MW | E/(MW·h) | 效率/% | SOC范围/% | |||||
R_1 | 10 | 0.5 | 1 | 85 | 20~80 | |||||
14 | 1.0 | 2 | 85 | 20~80 | ||||||
25 | 0.2 | 1 | 85 | 20~80 | ||||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
R_2 | 25 | 0.2 | 1 | 85 | 20~80 | |||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
R_3 | 5 | 0.2 | 1 | 85 | 20~80 | |||||
10 | 0.5 | 1 | 85 | 20~80 | ||||||
14 | 0.5 | 2 | 85 | 20~80 | ||||||
20 | 0.5 | 1 | 85 | 20~80 | ||||||
25 | 0.2 | 1 | 85 | 20~80 | ||||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
32 | 0.2 | 0.8 | 85 | 20~80 |
表 2 资源聚合体内的ESS配置
Table 2 ESS configuration within resource aggregate
编号 | 节点 | Pmax/MW | E/(MW·h) | 效率/% | SOC范围/% | |||||
R_1 | 10 | 0.5 | 1 | 85 | 20~80 | |||||
14 | 1.0 | 2 | 85 | 20~80 | ||||||
25 | 0.2 | 1 | 85 | 20~80 | ||||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
R_2 | 25 | 0.2 | 1 | 85 | 20~80 | |||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
R_3 | 5 | 0.2 | 1 | 85 | 20~80 | |||||
10 | 0.5 | 1 | 85 | 20~80 | ||||||
14 | 0.5 | 2 | 85 | 20~80 | ||||||
20 | 0.5 | 1 | 85 | 20~80 | ||||||
25 | 0.2 | 1 | 85 | 20~80 | ||||||
27 | 0.5 | 1 | 85 | 20~80 | ||||||
32 | 0.2 | 0.8 | 85 | 20~80 |
类型 | 节点 | Pmax/MW | 功率因数 | |||
分散式风电 | 20 | 1.5 | –0.95~0.95 | |||
54 | 1.5 | –0.95~0.95 | ||||
90 | 1.5 | –0.95~0.95 |
表 3 配电网内可再生能源配置
Table 3 Renewable energy configuration in distribution network
类型 | 节点 | Pmax/MW | 功率因数 | |||
分散式风电 | 20 | 1.5 | –0.95~0.95 | |||
54 | 1.5 | –0.95~0.95 | ||||
90 | 1.5 | –0.95~0.95 |
1 | 罗欣儿, 杜进桥, 田杰, 等. 基于深度强化学习的主动配电网高恢复力决策方法[J]. 南方电网技术, 2022, 16 (1): 67- 74. |
LUO Xiner, DU Jinqiao, TIAN Jie, et al. High resilience decision-making method of active distribution network based on deep reinforcement learning[J]. Southern Power System Technology, 2022, 16 (1): 67- 74. | |
2 |
宋梦, 周佳妮, 高赐威, 等. CPSS视角下城市建筑与配电网高韧性协调运行: 研究述评与展望[J]. 电力系统自动化, 2023, 47 (23): 105- 121.
DOI |
SONG Meng, ZHOU Jiani, GAO Ciwei, et al. High-resilience coordinated operation of urban buildings and distribution networks from cyber-physical-social system perspective: research review and prospect[J]. Automation of Electric Power Systems, 2023, 47 (23): 105- 121.
DOI |
|
3 | 许泽凯, 刘曌, 和敬涵, 等. 新型配电网多虚拟电厂分布式资源聚合与聚合体优化运行方法[J]. 高电压技术, 2024, 50 (1): 105- 116. |
XU Zekai, LIU Zhao, HE Jinghan, et al. Distributed resource aggregation and aggregate optimization operation method of multi-virtual power plant in new power distribution network[J]. High Voltage Engineering, 2024, 50 (1): 105- 116. | |
4 | 宋天琦, 吕志鹏, 宋振浩, 等. 虚拟电厂规模化灵活资源聚合调控框架研究与思考[J]. 中国电力, 2024, 57 (1): 2- 8. |
SONG Tianqi, LV Zhipeng, SONG Zhenhao, et al. Research and thinking on the aggregation and dispatching control framework of virtual power plant's large scale flexible resources[J]. Electric Power, 2024, 57 (1): 2- 8. | |
5 | 周海浪, 刘一畔, 陈雨果, 等. 考虑灵活性收益的需求侧资源可行域聚合方法[J]. 中国电力, 2022, 55 (9): 56- 63, 155. |
ZHOU Hailang, LIU Yipan, CHEN Yuguo, et al. Demand side feasible region aggregation considering flexibility revenue[J]. Electric Power, 2022, 55 (9): 56- 63, 155. | |
6 | 许泽凯, 和敬涵, 刘曌, 等. 基于耦合约束解耦的虚拟电厂动态可行域求解方法[J]. 中国电机工程学报, 2024, 44 (9): 3440- 3452. |
XU Zekai, HE Jinghan, LIU Zhao, et al. Solution method of virtual power plant dynamic feasible region based on decoupling of coupling constraints[J]. Proceedings of the CSEE, 2024, 44 (9): 3440- 3452. | |
7 | 孙科, 陈文钢, 陈佳佳, 等. 基于电动汽车的极端场景多微电网韧性提升策略研究[J]. 电力系统保护与控制, 2023, 51 (24): 53- 65. |
SUN Ke, CHEN Wengang, CHEN Jiajia, et al. A resilience enhancement strategy for multi-microgrid in extreme scenarios based on electric vehicles[J]. Power System Protection and Control, 2023, 51 (24): 53- 65. | |
8 | 孙为民, 孙华东, 何剑, 等. 面向严重自然灾害的电力系统韧性评估技术综述[J]. 电网技术, 2024, 48 (1): 129- 139. |
SUN Weimin, SUN Huadong, HE Jian, et al. Review of power system resilience assessment techniques for severe natural disasters[J]. Power System Technology, 2024, 48 (1): 129- 139. | |
9 | 苏娟, 李拓, 刘峻玮, 等. 综合能源系统下虚拟储能建模方法与应用场景研究综述及展望[J/OL]. 中国电力, 2024: 1–15. (2024-04-07). https://kns.cnki.net/kcms/detail/11.3265.TM.20240403.1840.004.html. |
SU Juan, LI Tuo, LIU Junwei, et al. Review and prospect of modeling method and application scenario of virtual energy storage under integrated energy system[J/OL]. Electric Power, 2024: 1–15. (2024-04-07). https://kns.cnki.net/kcms/detail/11.3265.TM.20240403.1840.004.html. | |
10 |
王文悦, 刘海涛, 季宇. 虚拟电厂可调空间统一建模及其参与调峰市场的优化运行策略[J]. 电力系统自动化, 2022, 46 (18): 74- 82.
DOI |
WANG Wenyue, LIU Haitao, JI Yu. Unified modeling for adjustable space of virtual power plant and its optimal operation strategy for participating in peak-shaving market[J]. Automation of Electric Power Systems, 2022, 46 (18): 74- 82.
DOI |
|
11 | 周天娇, 周任军, 黄婧杰, 等. 储能聚合商自营共享模式下电能交易方法[J]. 电力自动化设备, 2023, 43 (5): 171- 176. |
ZHOU Tianjiao, ZHOU Renjun, HUANG Jingjie, et al. Energy trading method of energy storage aggregators under self-operating and sharing mode[J]. Electric Power Automation Equipment, 2023, 43 (5): 171- 176. | |
12 | 汪锋, 刘智强, 张克勇, 等. 基于分时电价与储能充放电策略的台区可调控资源聚合及调度[J]. 储能科学与技术, 2023, 12 (4): 1204- 1214. |
WANG Feng, LIU Zhiqiang, ZHANG Keyong, et al. Adjustable resource aggregation and scheduling in distribution transformer station areas based on time-of-use price and charge-discharge strategy of energy storage[J]. Energy Storage Science and Technology, 2023, 12 (4): 1204- 1214. | |
13 | TAN Z F, ZHONG H W, WANG X Y, et al. An efficient method for estimating capability curve of virtual power plant[J]. CSEE Journal of Power and Energy Systems, 2022, 8 (3): 780- 788. |
14 | MAURICETTE L, DONG Z H, ZHANG L N, et al. Resilience enhancement of urban energy systems via coordinated vehicle-to-grid control strategies[J]. CSEE Journal of Power and Energy Systems, 2023, 9 (2): 433- 443. |
15 |
TAO R, ZHAO D M, XU C Y, et al. Resilience enhancement of integrated electricity-gas-heat urban energy system with data centres considering waste heat reuse[J]. IEEE Transactions on Smart Grid, 2023, 14 (1): 183- 198.
DOI |
16 |
PILTAN G, PIROUZI S, AZARHOOSHANG A, et al. Storage-integrated virtual power plants for resiliency enhancement of smart distribution systems[J]. Journal of Energy Storage, 2022, 55, 105563.
DOI |
17 |
于松源, 张峻松, 元志伟, 等. 计及热惯性的热电联产虚拟电厂韧性提升策略[J]. 发电技术, 2023, 44 (6): 758- 768.
DOI |
YU Songyuan, ZHANG Junsong, YUAN Zhiwei, et al. Resilience enhancement strategy of combined heat and power-virtual power plant considering thermal inertia[J]. Power Generation Technology, 2023, 44 (6): 758- 768.
DOI |
|
18 |
勇蔚柯, 李扬, 曹阳. 基于需求响应的配电网韧性提升技术研究[J]. 电力需求侧管理, 2022, 24 (2): 20- 26.
DOI |
YONG Weike, LI Yang, CAO Yang. Research on improvement technology of distribution network resilience based on demand response[J]. Power Demand Side Management, 2022, 24 (2): 20- 26.
DOI |
|
19 |
ZHANG S D, GE S Y, LIU H, et al. Region-based flexibility quantification in distribution systems: an analytical approach considering spatio-temporal coupling[J]. Applied Energy, 2024, 355, 122175.
DOI |
20 |
ZHANG T C, WANG J X, LI G Y, et al. Characterizing temporal-coupled feasible region of active distribution networks[J]. IEEE Transactions on Industry Applications, 2022, 58 (5): 5687- 5696.
DOI |
21 |
王思远, 吴文传. 灵活性资源聚合参考模型与量化指标体系[J]. 电力系统自动化, 2024, 48 (3): 1- 9.
DOI |
WANG Siyuan, WU Wenchuan. Aggregation reference model and quantitative metric system of flexible energy resources[J]. Automation of Electric Power Systems, 2024, 48 (3): 1- 9.
DOI |
|
22 | 王炜歆, 王小君, 许寅, 等. 考虑输配协同的电网并行恢复分区及机组启动次序统一优化决策方法[J]. 中国电机工程学报, 2024, 44 (3): 859- 872. |
WANG Weixin, WANG Xiaojun, XU Yin, et al. A synthetic optimal decision-making method for parallel restoration sectionalizing and generator start-up sequence of power grids considering transmission and distribution system coordination[J]. Proceedings of the CSEE, 2024, 44 (3): 859- 872. | |
23 |
TAN Z F, ZHONG H W, XIA Q, et al. Estimating the robust P-Q capability of a technical virtual power plant under uncertainties[J]. IEEE Transactions on Power Systems, 2020, 35 (6): 4285- 4296.
DOI |
24 |
TAN Z F, YAN Z, ZHONG H W, et al. Non-iterative solution for coordinated optimal dispatch via equivalent projection: Part II: method and applications[J]. IEEE Transactions on Power Systems, 2024, 39 (1): 899- 908.
DOI |
25 |
张海春, 陈望达, 沈浚, 等. 计及灵活性资源的配电网韧性研究评述[J]. 电力建设, 2023, 44 (12): 66- 84.
DOI |
ZHANG Haichun, CHEN Wangda, SHEN Jun, et al. Review of power distribution network resilience studies considering flexibility resources[J]. Electric Power Construction, 2023, 44 (12): 66- 84.
DOI |
|
26 |
马继洋, 蔡永翔, 唐巍, 等. 考虑电动汽车参与韧性提升的配电网状态平滑切换控制策略[J]. 电力建设, 2024, 45 (5): 29- 36.
DOI |
MA Jiyang, CAI Yongxiang, TANG Wei, et al. Enhancing distribution network resilience: electric vehicle integration in seamless state switching strategy[J]. Electric Power Construction, 2024, 45 (5): 29- 36.
DOI |
|
27 |
王志伟, 王伟, 李德鑫, 等. 冰灾天气下考虑输配协同的电-热联合系统韧性提升策略[J]. 电力建设, 2024, 45 (5): 9- 18.
DOI |
WANG Zhiwei, WANG Wei, LI Dexin, et al. Enhancing resilience in electric-heat combined system: coordinated approach for transmission and distribution network during ice disasters[J]. Electric Power Construction, 2024, 45 (5): 9- 18.
DOI |
[1] | 李湃, 卢慧, 李驰, 杜洪博. 多能互补发电系统电/热储能容量双层优化配置方法[J]. 中国电力, 2025, 58(3): 55-64. |
[2] | 刘雨姗, 陈俊儒, 常喜强, 刘牧阳. 构网型储能变流器并网性能的多层级评价指标体系及应用[J]. 中国电力, 2025, 58(3): 193-203. |
[3] | 徐祥海, 商佳宜, 赵天煜, 龚莺飞, 何卫斌, 汤亚宸. 考虑碳排放限制与市场参与的储能利润优化[J]. 中国电力, 2025, 58(3): 204-212. |
[4] | 李金, 刘科孟, 许丹莉, 高为举, 黄磊, 吴浩星, 华昊辰. 基于共享储能站的多能互补微能源网外衍响应双层优化[J]. 中国电力, 2025, 58(2): 43-56. |
[5] | 闫志彬, 李立, 阳鹏, 宋蕙慧, 车彬, 靳盘龙. 考虑构网型储能支撑能力的微电网优化调度策略[J]. 中国电力, 2025, 58(2): 103-110. |
[6] | 邹小燕, 张瑞宏. 考虑政府干预的可再生能源与储能企业合作模式演化博弈研究[J]. 中国电力, 2025, 58(1): 153-163. |
[7] | 王雨晴, 张敏, 王嘉兴, 李泊皓, 杨天阳, 曾鸣. 基于超模博弈的共享储能容量租赁价格决策[J]. 中国电力, 2025, 58(1): 164-173. |
[8] | 张旭, 王淳, 胡奕涛, 陈锐凯, 刘昆, 郭志东, 钟俊勋. 面向短时过载及长期轻载的配变侧储能配置与调度双层优化[J]. 中国电力, 2025, 58(1): 174-184. |
[9] | 姜文瑾, 刘巧妹, 杨晓东, 阙定飞, 沈豫, 黄夏楠, 赖振华. 计及气固两相储氢特性的海上风电-多元储能系统优化配置[J]. 中国电力, 2024, 57(9): 103-112. |
[10] | 高明非, 韩中合, 赵斌, 李鹏, 吴迪. 区域综合能源系统多类型储能协同优化与运行策略[J]. 中国电力, 2024, 57(9): 205-216. |
[11] | 么钟然, 孙丽颖. 考虑线路阻抗的分布式储能SOC均衡控制策略[J]. 中国电力, 2024, 57(9): 238-246. |
[12] | 田刚领, 武鸿鑫, 李娟, 张柳丽, 谢佳, 李爱魁. 风电场多功能储能电站功率分配策略[J]. 中国电力, 2024, 57(9): 247-256. |
[13] | 冯兴, 杨威, 张安安, 张曦, 李茜, 雷宪章. 双向可逆的集中式电氢耦合系统容量优化配置[J]. 中国电力, 2024, 57(8): 1-11. |
[14] | 邱洁, 梁财豪, 朱永强, 夏瑞华. 考虑氢能储运特性的配电网集群划分与氢能系统选址定容策略[J]. 中国电力, 2024, 57(8): 12-22. |
[15] | 齐彩娟, 陈宝生, 韦冬妮, 杨钊. 考虑主从博弈定价模式的共享储能分布鲁棒优化配置方法研究[J]. 中国电力, 2024, 57(7): 40-53. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||