中国电力 ›› 2025, Vol. 58 ›› Issue (8): 69-83.DOI: 10.11930/j.issn.1004-9649.202411078
• 交直流配电系统灵活资源规划运行及动态控制 • 上一篇 下一篇
王辉1,2(), 夏玉琦1(
), 李欣1,2(
), 董宇成1, 周子澜1
收稿日期:
2024-11-22
发布日期:
2025-08-26
出版日期:
2025-08-28
作者简介:
基金资助:
WANG Hui1,2(), XIA Yuqi1(
), LI Xin1,2(
), DONG Yucheng1, ZHOU Zilan1
Received:
2024-11-22
Online:
2025-08-26
Published:
2025-08-28
Supported by:
摘要:
为解决区域综合能源系统中多主体利益冲突、用户侧分布式储能投资成本高昂、容量利用不均以及碳排放量较高等问题,提出一种基于云储能服务商-综合能源系统运行商(integrated energy system operators,IESO)-负荷聚合商(load aggregators,LA)联盟三层博弈的区域综合能源系统低碳运行策略。首先,构建租赁云储能的IESO与LA的能源交易框架。其次,考虑到多个理性主体对盈利最大化的诉求,建立综合能源系统三层博弈模型。第一层为以IESO为主导者、LA联盟为伴随者的主从博弈;第二层为以云储能服务商为供给者、IESO为接收者的主从博弈;第三层是LA联盟成员之间的合作博弈,并采取非对称纳什议价法分配收益。最后,利用二分法、KKT条件结合交替方向乘子法(alternating direction multiplier method,ADMM)对该模型进行求解。仿真结果表明,该策略不仅能够促进系统低碳运行,而且能够满足各主体的经济性需求。
中图分类号:
王辉, 夏玉琦, 李欣, 董宇成, 周子澜. 基于多主体三层博弈的区域综合能源系统低碳运行策略[J]. 中国电力, 2025, 58(8): 69-83.
WANG Hui, XIA Yuqi, LI Xin, DONG Yucheng, ZHOU Zilan. Research on Low-carbon Operation Strategies for Regional Integrated Energy Systems Based on Multi-agent Three-level Game[J]. Electric Power, 2025, 58(8): 69-83.
时间 | 购电价/(元·(kW·h)–1) | 售电价/(元·(kW·h)–1) | ||
00:00—07:00 | 0.43 | 0.30 | ||
23:00—24:00 | ||||
07:00—10:00 | 0.79 | 0.60 | ||
15:00—18:00 | ||||
21:00—23:00 | ||||
10:00—15:00 | 1.21 | 1.02 | ||
18:00—21:00 |
表 1 云储能服务商从电网购/售电价
Table 1 The electricity purchase and sale prices for cloud energy storage service providers from/to the grid
时间 | 购电价/(元·(kW·h)–1) | 售电价/(元·(kW·h)–1) | ||
00:00—07:00 | 0.43 | 0.30 | ||
23:00—24:00 | ||||
07:00—10:00 | 0.79 | 0.60 | ||
15:00—18:00 | ||||
21:00—23:00 | ||||
10:00—15:00 | 1.21 | 1.02 | ||
18:00—21:00 |
情景 | 成本/元 | |||||||
云储能服务商 | IESO | LA | LA联盟 | |||||
1 | 0 | LA1: | ||||||
LA2: | ||||||||
LA3: | ||||||||
2 | 0 | LA1: | ||||||
LA2: | ||||||||
LA3: | ||||||||
3 | LA1: | |||||||
LA2: | ||||||||
LA3: |
表 2 3种情景下的各主体的运行成本
Table 2 The operational costs of stakeholders in three scenarios
情景 | 成本/元 | |||||||
云储能服务商 | IESO | LA | LA联盟 | |||||
1 | 0 | LA1: | ||||||
LA2: | ||||||||
LA3: | ||||||||
2 | 0 | LA1: | ||||||
LA2: | ||||||||
LA3: | ||||||||
3 | LA1: | |||||||
LA2: | ||||||||
LA3: |
情景 | 上级能源交互成本/元 | 碳交易成本/元 | 碳排放量/kg | |||
2 | ||||||
3 | 709.20 |
表 3 不同情景下上级能源交互成本、碳交易成本和碳排放量
Table 3 Superior energy interaction costs, carbon trading costs and carbon emissions under different scenarios
情景 | 上级能源交互成本/元 | 碳交易成本/元 | 碳排放量/kg | |||
2 | ||||||
3 | 709.20 |
图 12 不同情景下新型CHP机组出力、新能源消纳量和可再生能源利用率
Fig.12 Output of advanced CHP units, accommodation capacity of renewable energy, and utilization rate of renewable energy under different scenarios
议价方式 | LA | 议价因子 | 议价成本/元 | 收益提升/元 | ||||
标准议价方式 | 1 | 1.00 | –6.9 | 207.6 | ||||
2 | 1.00 | – | 205.8 | |||||
3 | 1.00 | 206.6 | ||||||
非对称议价方式 | 1 | 3.48 | 52.2 | 266.7 | ||||
2 | 0.63 | – | 92.7 | |||||
3 | 3.32 | 260.6 |
表 4 不同议价利益分配方法的结果对比
Table 4 Comparison of different bargaining benefits distribution methods
议价方式 | LA | 议价因子 | 议价成本/元 | 收益提升/元 | ||||
标准议价方式 | 1 | 1.00 | –6.9 | 207.6 | ||||
2 | 1.00 | – | 205.8 | |||||
3 | 1.00 | 206.6 | ||||||
非对称议价方式 | 1 | 3.48 | 52.2 | 266.7 | ||||
2 | 0.63 | – | 92.7 | |||||
3 | 3.32 | 260.6 |
1 |
冀肖彤, 杨东俊, 方仍存, 等. “双碳” 目标下未来配电网构建思考与展望[J]. 电力建设, 2024, 45 (2): 37- 48.
DOI |
JI Xiaotong, YANG Dongjun, FANG Rengcun, et al. Research and prospect of future distribution network construction under dual carbon target[J]. Electric Power Construction, 2024, 45 (2): 37- 48.
DOI |
|
2 | 束娜, 江山, 刘春伶, 等. 计及灵活性资源多时间尺度协调互济的电-气-热综合能源系统优化调度[J]. 电力建设, 2024, 45 (12): 3- 15. |
SHU Na, JIANG Shan, LIU Chunling, et al. Optimal scheduling of electricity-gas-heat integrated energy system with flexible resources in multiple time scales[J]. Electric Power Construction, 2024, 45 (12): 3- 15. | |
3 | 傅成程, 张春雁, 刘键烨, 等. 负荷聚合商参与需求侧资源聚合优化调控研究[J/OL]. 中国电力, 1–12[2024-11-20]. http://kns.cnki.net/kcms/detail/11.3265.TM.20240924.1124.002.html. |
FU Chengcheng, ZHANG Chunyan, LIU Jianye, et al. Research on load aggregators' participation in DSRs optimization and regulation[J/OL]. Electric Power, 1–12[2024-11-20]. http://kns.cnki.net/kcms/detail/11.3265.TM.20240924.1124.002.html. | |
4 | 任洪波, 王楠, 吴琼, 等. 考虑阶梯型碳交易的多负荷聚合商协同优化调度与成本分配[J]. 电力建设, 2024, 45 (2): 171- 182. |
REN Hongbo, WANG Nan, WU Qiong, et al. Collaborative optimal scheduling and cost allocation of multiload aggregator considering ladder-type carbon trading[J]. Electric Power Construction, 2024, 45 (2): 171- 182. | |
5 |
YUE T Y, WANG H L, LI C J, et al. Optimization strategies for green power and certificate trading in China considering seasonality: an evolutionary game-based system dynamics[J]. Energy, 2024, 311, 133355.
DOI |
6 |
王秀慧, 赵浩辰, 谭忠富. 计及负荷聚合商的综合能源系统双层主从博弈运行优化[J]. 可再生能源, 2023, 41 (11): 1554- 1562.
DOI |
WANG Xiuhui, ZHAO Haochen, TAN Zhongfu. Optimization study of integrated energy system hierarchical Stackelberg game operation with load aggregator[J]. Renewable Energy Resources, 2023, 41 (11): 1554- 1562.
DOI |
|
7 | 田福银, 马骏, 王灿, 等. 基于双层主从博弈的综合能源系统多主体低碳经济运行策略[J]. 中国电力, 2022, 55 (11): 184- 193. |
TIAN Fuyin, MA Jun, WANG Can, et al. Multi-agent low-carbon and economy operation strategy of integrated energy system based on bi-level master-slave game[J]. Electric Power, 2022, 55 (11): 184- 193. | |
8 | 张婕, 花宇飞, 王晨. 基于合作博弈的需求侧调节响应能力共享模型[J]. 中国电力, 2025, 58 (6): 45- 55. |
ZHANG Jie, HUA Yufei, WANG Chen. A demand side adjustment capacity sharing model based on cooperative game[J]. Electric Power, 2025, 58 (6): 45- 55. | |
9 | 张俊成, 黎敏, 刘志文, 等. 基于改进交替方向乘子法的配电网柔性负荷分层集群调控方法[J]. 中国电力, 2024, 57 (1): 140- 147. |
ZHANG Juncheng, LI Min, LIU Zhiwen, et al. Hierarchical cluster control method for flexible load in distribution network based on improved alternating direction multiplier method[J]. Electric Power, 2024, 57 (1): 140- 147. | |
10 | 刘也, 李超, 赵剑锋, 等. 基于合作博弈的多微网电热能量交易策略[J]. 自动化技术与应用, 2024, 43 (9): 135- 140. |
LIU Ye, LI Chao, ZHAO Jianfeng, et al. Multi microgrid electric heating energy trading strategy based on cooperative game theory[J]. Techniques of Automation and Applications, 2024, 43 (9): 135- 140. | |
11 | 陈璨, 樊小伟, 张文浩, 等. 促进分布式光伏消纳的两阶段源网荷储互动优化运行策略[J]. 电网技术, 2022, 46 (10): 3786- 3799. |
CHEN Can, FAN Xiaowei, ZHANG Wenhao, et al. Two-staged generation-grid-load-energy storage interactive optimization operation strategy for promotion of distributed photovoltaic consumption[J]. Power System Technology, 2022, 46 (10): 3786- 3799. | |
12 | 崔杨, 安宁, 付小标, 等. 考虑广义储能与碳捕集设备联合调峰的电力系统低碳经济调度[J]. 电力自动化设备, 2023, 43 (8): 40- 48. |
CUI Yang, AN Ning, FU Xiaobiao, et al. Low-carbon economic dispatching of power system considering joint peak shaving of generalized energy storage and carbon capture equipment[J]. Electric Power Automation Equipment, 2023, 43 (8): 40- 48. | |
13 |
康重庆, 刘静琨, 张宁. 未来电力系统储能的新形态: 云储能[J]. 电力系统自动化, 2017, 41 (21): 2- 8, 16.
DOI |
KANG Chongqing, LIU Jingkun, ZHANG Ning. A new form of energy storage in future power system: cloud energy storage[J]. Automation of Electric Power Systems, 2017, 41 (21): 2- 8, 16.
DOI |
|
14 | 粟世玮, 王相, 李咸善, 等. 冷热电联供型区域综合能源系统电-热-冷云储能优化配置[J]. 南方电网技术, 2025, 19 (3): 24- 38. |
SU Shiwei, WANG Xiang, LI Xianshan, et al. Optimal configuration of electricity-thermal-cold cloud energy storage in the regional integrated energy system with CCHP[J]. Southern Power System Technology, 2025, 19 (3): 24- 38. | |
15 |
陈页, 郭亦宗, 郭创新, 等. 计及需求响应的微电网云储能配置模型[J]. 电气自动化, 2022, 44 (2): 25- 28.
DOI |
CHEN Ye, GUO Yizong, GUO Chuangxin, et al. Microgrid cloud energy storage configuration model considering demand response[J]. Electrical Automation, 2022, 44 (2): 25- 28.
DOI |
|
16 | 王辉, 吴作辉, 李欣, 等. 含租赁共享储能的多微网与配电网的双层能量交易策略[J]. 电测与仪表, 2025, 62 (6): 24- 34. |
WANG Hui, WU Zuohui, LI Xin, et al. Double-layer energy transaction strategy of multi-microgrids and distribution network with leased shared energy storage[J]. Electrical Measurement & Instrumentation, 2025, 62 (6): 24- 34. | |
17 | 李咸善, 马凯琳, 程杉. 含多区域综合能源系统的主动配电网双层博弈优化调度策略[J]. 电力系统保护与控制, 2022, 50 (1): 8- 22. |
LI Xianshan, MA Kailin, CHENG Shan. Dispatching strategy of an active distribution network with multiple regional integrated energy systems based on two-level game optimization[J]. Power System Protection and Control, 2022, 50 (1): 8- 22. | |
18 | 孙文杰, 武家辉, 张强. 基于双层博弈的配电网与多综合能源微网协调优化[J]. 电力系统保护与控制, 2024, 52 (2): 26- 38. |
SUN Wenjie, WU Jiahui, ZHANG Qiang. Coordinated optimization of a distribution network and multi-integrated energy microgrid based on a double-layer game[J]. Power System Protection and Control, 2024, 52 (2): 26- 38. | |
19 |
王云龙, 何山, 艾纯玉, 等. 考虑云储能的综合能源运营商-负荷聚合商联盟混合博弈定价策略[J]. 电网与清洁能源, 2024, 40 (6): 11- 19, 29.
DOI |
WANG Yunlong, HE Shan, AI Chunyu, et al. The hybrid game pricing strategy for integrated energy operator-load aggregator alliance considering cloud energy storage[J]. Power System and Clean Energy, 2024, 40 (6): 11- 19, 29.
DOI |
|
20 | 陈兴龙, 曹喜民, 陈洁, 等. 绿证-碳交易机制下热电灵活响应的园区综合能源系统优化调度[J]. 中国电力, 2024, 57 (6): 110- 120. |
CHEN Xinglong, CAO Ximin, CHEN Jie, et al. Optimized dispatch of park integrated energy system with thermoelectric flexible response under green certificate-carbon trading mechanism[J]. Electric Power, 2024, 57 (6): 110- 120. | |
21 |
牛耕, 季宇, 杨安男, 等. 基于改进碳交易机制的多能微网低碳经济调度[J]. 电力建设, 2023, 44 (10): 107- 116.
DOI |
NIU Geng, JI Yu, YANG Annan, et al. Low-carbon economic dispatch of multi-energy microgrid based on improved carbon trading mechanism[J]. Electric Power Construction, 2023, 44 (10): 107- 116.
DOI |
|
22 |
LYU Z L, LAI Y F, YI J Q, et al. Low carbon and economic dispatch of the multi-microgrid integrated energy system using CCS-P2G integrated flexible operation method[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2023, 45 (2): 3617- 3638.
DOI |
23 | 沈运帷, 徐凯, 林顺富, 等. 考虑广义储能参与的多园区综合能源系统低碳优化运行策略[J]. 电力自动化设备, 2024, 44 (11): 41- 51. |
SHEN Yunwei, XU Kai, LIN Shunfu, et al. Low-carbon optimal operation strategy of multi-park integrated energy system considering generalized energy storage participation[J]. Electric Power Automation Equipment, 2024, 44 (11): 41- 51. | |
24 | 胡亚春, 窦震海, 张志一, 等. 基于分布鲁棒和改进纳什谈判的多微网-共享储能运行优化策略[J]. 电力建设, 2024, 45 (7): 100- 112. |
HU Yachun, DOU Zhenhai, ZHANG Zhiyi, et al. Multi-microgrid and shared energy storage operation optimization strategy based on distributionally robust and improved Nash bargaining[J]. Electric Power Construction, 2024, 45 (7): 100- 112. | |
25 | 蒋东荣, 郭艺鑫, 梁珂, 等. 考虑新能源消纳与低碳排放的多电-气互联系统合作博弈[J]. 太阳能学报, 2023, 44 (10): 58- 67. |
JIANG Dongrong, GUO Yixin, LIANG Ke, et al. Cooperative game of multi-power-gas interconnection system considering new energy consumption and low carbon emission[J]. Acta Energiae Solaris Sinica, 2023, 44 (10): 58- 67. | |
26 | 陈志永, 胡平, 别朝红, 等. 基于合作博弈的虚拟电厂联盟策略与收益分配机制研究[J]. 智慧电力, 2024, 52 (1): 39- 46, 64. |
CHEN Zhiyong, HU Ping, BIE Zhaohong, et al. Alliance strategy and revenue allocation mechanism for clustered virtual power plants based on cooperative game[J]. Smart Power, 2024, 52 (1): 39- 46, 64. | |
27 | 巨亚琦, 谢丽蓉, 卞一帆, 等. 多微电网共享储能优化配置与成本分配方法[J/OL]. 南方电网技术, 1–9[2024-12-24]. http://kns.cnki.net/kcms/detail/44.1643.tk.20241205.1436.010.html. |
JU Yaqi, XIE Lirong, BIAN Yifan, et al. Optimal allocation and cost allocation method of shared energy storage for multi-microgrids[J/OL]. Southern Power Grid Technology, 1–9[2024-12-24]. http://kns.cnki.net/kcms/detail/44.1643.tk.20241205.1436.010.html. |
[1] | 傅成程, 张春雁, 刘键烨, 贾德香, 李丹, 王素. 负荷聚合商参与需求侧资源聚合优化调控方法[J]. 中国电力, 2025, 58(8): 1-11. |
[2] | 魏震波, 李银江, 张雯雯, 杨超. 基于改进Myerson值法的云储能双层优化运营模型[J]. 中国电力, 2023, 56(7): 198-206. |
[3] | 谭鸣骢, 王玲玲, 蒋传文, 刘航航, 巫里尔沙, 唐炯. 考虑负荷聚合商调节潜力的需求响应双层优化模型[J]. 中国电力, 2022, 55(10): 32-44. |
[4] | 李咸善, 陈奥博, 程杉, 陈敏睿. 基于生态博弈的含云储能微电网多智能体协调优化调度[J]. 中国电力, 2021, 54(7): 166-177. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||