中国电力 ›› 2025, Vol. 58 ›› Issue (3): 183-192.DOI: 10.11930/j.issn.1004-9649.202410048

• 新能源与储能 • 上一篇    下一篇

基于改进生成对抗网络的风光气象资源联合场景生成方法

姜通海1(), 王峰1(), 刘子琪1(), 单帅杰2()   

  1. 1. 中广核(山东)新能源投资有限公司,山东 济南 250014
    2. 山东大学 电气工程学院,山东 济南 250061
  • 收稿日期:2024-10-15 出版日期:2025-03-28 发布日期:2025-03-26
  • 作者简介:
    姜通海(1970),男,高级工程师,从事多能互补源网荷储一体化集成与协同优化、基于人工智能技术的源网荷储分布式资源协同控制、高精度新能源功率预测驱动的源网荷储协调规划,E-mail:13940952916@163.com
    王 峰(1978),男,高级工程师,从事新能源场站开发建设及运营管理技术,E-mail:wangfengxuzhou@163.com
    刘子琪(2000),女,工程师,从事新能源开发建设及运营管理,E-mail:1575903717@qq.com
    单帅杰(1997),男,通信作者,博士研究生,从事新能源运行管理、电力经济、电力供需研究,E-mail:shanshuaijie@126.com
  • 基金资助:
    国家电网有限公司科技项目(4000-202355381A-2-3-XG);国家自然科学基金资助项目(52177095)。

A Joint Scenario Generation Method for Wind-Solar Meteorological Resources Based on Improved Generative Adversarial Network

Tonghai JIANG1(), Feng WANG1(), Ziqi LIU1(), Shuaijie SHAN2()   

  1. 1. CGN (Shandong) New Energy Investment Co., Ltd., Jinan 250014, China
    2. School of Electrical Engineering, Shandong University, Jinan 250061, China
  • Received:2024-10-15 Online:2025-03-28 Published:2025-03-26
  • Supported by:
    This work is supported by Science and Technology Project of SGCC (No.4000-202355381A-2-3-XG) and National Natural Science Foundation of China (No.52177095).

摘要:

随着可再生能源的大规模发展,风光气象资源的波动性和不确定性给电力系统安全稳定运行带来极大的影响。为支持电力系统规划与决策,克服新能源功率预测过程中气象资源的不确定性,提出了一种基于深度卷积生成对抗网络(deep convolutional generative adversarial networks,DCGAN)的风光气象资源联合场景生成方法。首先,根据风电、光伏场站的空间分布规律,将新能源场站空间分布与气象要素相关联;其次,利用DCGAN技术对风速-辐照度气象要素进行长时间序列场景模拟,实现区域范围的风光资源联合场景生成;然后,借助K-medoids方法消减冗余场景,保留聚类中心处的典型场景,进而直接评价场景生成效果,将气象要素转化为风电、光伏出力,对典型场景间接评价;最后,通过分析气象要素生成场景的直接评价与间接评价结果,检验场景生成算法的有效性。算例结果表明,基于DCGAN模型生成的典型场景能有效地反映区域空间风光分布规律,并在气象要素场景生成中具有较好的适用性。

关键词: 可再生能源, 联合场景生成, 场景消减, 深度学习

Abstract:

With the large-scale development of renewable energy, the volatility and uncertainty of wind and solar meteorological resources have a great impact on the safe and stable operation of the power system. To support the power system planning and decision-making, and overcome the uncertainty of meteorological resources in predicting new energy power, this paper proposes a wind-solar meteorological resource joint scenario generation method based on the deep convolutional generative adversarial networks (DCGAN). Firstly, based on the spatial distribution pattern of wind and photovoltaic power stations, the spatial distribution of new energy stations are associated with meteorological factors. Secondly, the DCGAN technology is used to simulate the long time series scenarios of wind speed-irradiance meteorological elements, thus achieving the joint scenario generation of wind- solar resources in a regional scope; Next, the K-medoids method is used to reduce the redundance scenarios and keep the typical scenarios at the cluster center, subsequently realizing the direct evaluation of the scenario generation effects. And then, the meteorological elements are converted into wind power and photovoltaic output, thus achieving the indirect evaluation of typical scenarios. Finally, the effectiveness of the scenario generation algorithm is tested through analyzing the direct and indirect evaluation results of the meteorological element generation scenarios. The case study results show that the typical scenarios generated based on the DCGAN model can effectively reflect the spatial distribution of wind-solar resources in the region, and the proposed method has good applicability in generating meteorological element scenarios.

Key words: renewable energy, joint scenario generation, scenario reduction, deep learning