中国电力 ›› 2025, Vol. 58 ›› Issue (3): 183-192.DOI: 10.11930/j.issn.1004-9649.202410048
收稿日期:
2024-10-15
出版日期:
2025-03-28
发布日期:
2025-03-26
作者简介:
基金资助:
Tonghai JIANG1(), Feng WANG1(
), Ziqi LIU1(
), Shuaijie SHAN2(
)
Received:
2024-10-15
Online:
2025-03-28
Published:
2025-03-26
Supported by:
摘要:
随着可再生能源的大规模发展,风光气象资源的波动性和不确定性给电力系统安全稳定运行带来极大的影响。为支持电力系统规划与决策,克服新能源功率预测过程中气象资源的不确定性,提出了一种基于深度卷积生成对抗网络(deep convolutional generative adversarial networks,DCGAN)的风光气象资源联合场景生成方法。首先,根据风电、光伏场站的空间分布规律,将新能源场站空间分布与气象要素相关联;其次,利用DCGAN技术对风速-辐照度气象要素进行长时间序列场景模拟,实现区域范围的风光资源联合场景生成;然后,借助K-medoids方法消减冗余场景,保留聚类中心处的典型场景,进而直接评价场景生成效果,将气象要素转化为风电、光伏出力,对典型场景间接评价;最后,通过分析气象要素生成场景的直接评价与间接评价结果,检验场景生成算法的有效性。算例结果表明,基于DCGAN模型生成的典型场景能有效地反映区域空间风光分布规律,并在气象要素场景生成中具有较好的适用性。
姜通海, 王峰, 刘子琪, 单帅杰. 基于改进生成对抗网络的风光气象资源联合场景生成方法[J]. 中国电力, 2025, 58(3): 183-192.
Tonghai JIANG, Feng WANG, Ziqi LIU, Shuaijie SHAN. A Joint Scenario Generation Method for Wind-Solar Meteorological Resources Based on Improved Generative Adversarial Network[J]. Electric Power, 2025, 58(3): 183-192.
场景序号 | 生成概率 | 场景序号 | 生成概率 | |||
1 | 6 | |||||
2 | 7 | |||||
3 | 8 | |||||
4 | 9 | |||||
5 | 10 |
表 1 典型场景概率值
Table 1 Probability values for typical scenarios
场景序号 | 生成概率 | 场景序号 | 生成概率 | |||
1 | 6 | |||||
2 | 7 | |||||
3 | 8 | |||||
4 | 9 | |||||
5 | 10 |
场景生 成方法 | 年分布 偏差/% | 年峰值 偏差/% | 资源变异系数/% | |||||||||||||
风速 | 辐照度 | 风速 | 辐照度 | 风速 均值 | 风速最 大值 | 辐照度 均值 | 辐照度 最大值 | |||||||||
传统 | 0.69 | 5.23 | 17.96 | 8.86 | 8.36 | 51.22 | 13.51 | 54.61 | ||||||||
DCGAN | 0.32 | 1.08 | 3.65 | 6.57 | 3.75 | 18.24 | 4.12 | 18.72 |
表 2 DCGAN方法场景生成离散性和极端性评价指标
Table 2 DCGAN method scenario generation discreteness and extreme evaluation indicators
场景生 成方法 | 年分布 偏差/% | 年峰值 偏差/% | 资源变异系数/% | |||||||||||||
风速 | 辐照度 | 风速 | 辐照度 | 风速 均值 | 风速最 大值 | 辐照度 均值 | 辐照度 最大值 | |||||||||
传统 | 0.69 | 5.23 | 17.96 | 8.86 | 8.36 | 51.22 | 13.51 | 54.61 | ||||||||
DCGAN | 0.32 | 1.08 | 3.65 | 6.57 | 3.75 | 18.24 | 4.12 | 18.72 |
置信 度/% | DCGAN | 传统方法 | ||||||
覆盖率/% | 功率区间/MW | 覆盖率/% | 功率区间/MW | |||||
100 | 97.42 | 390.32 | 98.04 | 562.48 | ||||
95 | 92.31 | 292.78 | 97.38 | 434.25 | ||||
90 | 86.75 | 222.71 | 94.29 | 315.08 |
表 3 风光资源联合出力评价指标
Table 3 Joint output evaluation indicators of wind and solar resources
置信 度/% | DCGAN | 传统方法 | ||||||
覆盖率/% | 功率区间/MW | 覆盖率/% | 功率区间/MW | |||||
100 | 97.42 | 390.32 | 98.04 | 562.48 | ||||
95 | 92.31 | 292.78 | 97.38 | 434.25 | ||||
90 | 86.75 | 222.71 | 94.29 | 315.08 |
场景生成方法 | 计算时间/min | 迭代次数 | ||
DCGAN | 3.4 | 50 | ||
传统方法 | 7.3 | 50 |
表 4 模型计算效率评价指标
Table 4 Evaluation indicators of model computation efficiency
场景生成方法 | 计算时间/min | 迭代次数 | ||
DCGAN | 3.4 | 50 | ||
传统方法 | 7.3 | 50 |
1 |
LI M L, YANG M, YU Y X, et al. Short-term wind power forecast based on continuous conditional random field[J]. IEEE Transactions on Power Systems, 2024, 39 (1): 2185- 2197.
DOI |
2 | 胡源, 薛松, 杨素, 等. 综合能源背景下的配电网多场景规划[J]. 中国电力, 2021, 54 (4): 175- 184. |
HU Yuan, XUE Song, YANG Su, et al. Multi-scenario planning of distribution network in the context of integrated energy[J]. Electric Power, 2021, 54 (4): 175- 184. | |
3 | 薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34 (29): 5029- 5040. |
XUE Yusheng, LEI Xing, XUE Feng, et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34 (29): 5029- 5040. | |
4 | ZHANG Y M, ZHANG X, JI X Q, et al. Optimization of integrated energy system considering transmission and distribution network interconnection and energy transmission dynamic characteristics[J]. International Journal of Electrical Power & Energy Systems, 2023, 153, 109357. |
5 | 任景, 高敏, 程松, 等. 面向新能源不确定性的西北电力电量平衡机制[J]. 中国电力, 2023, 56 (9): 66- 78. |
REN Jing, GAO Min, CHENG Song, et al. A balance method for power supply-demand adapting to high uncertainties of renewable energy in northwest power grid[J]. Electric Power, 2023, 56 (9): 66- 78. | |
6 | 李湃, 王伟胜, 刘纯, 等. 张北柔性直流电网工程新能源与抽蓄电站配置方案运行经济性评估[J]. 中国电机工程学报, 2018, 38 (24): 7206- 7214, 7447. |
LI Pai, WANG Weisheng, LIU Chun, et al. Economic assessment of Zhangbei VSC-based DC grid planning scheme with integration of renewable energy and pumped-hydro storage power station[J]. Proceedings of the CSEE, 2018, 38 (24): 7206- 7214, 7447. | |
7 |
曹慧秋, 徐箭, 洪敏, 等. 基于通用分布的风电功率出力动态场景生成方法[J]. 电测与仪表, 2018, 55 (24): 6- 10.
DOI |
CAO Huiqiu, XU Jian, HONG Min, et al. A method of dynamic scenarios generation of wind power output based on versatile distribution[J]. Electrical Measurement & Instrumentation, 2018, 55 (24): 6- 10.
DOI |
|
8 |
MAKAROV Y V, ETINGOV P V, MA J, et al. Incorporating uncertainty of wind power generation forecast into power system operation, dispatch, and unit commitment procedures[J]. IEEE Transactions on Sustainable Energy, 2011, 2 (4): 433- 442.
DOI |
9 |
MA X Y, SUN Y Z, FANG H L. Scenario generation of wind power based on statistical uncertainty and variability[J]. IEEE Transactions on Sustainable Energy, 2013, 4 (4): 894- 904.
DOI |
10 | 李丹, 梁云嫣, 缪书唯, 等. 基于高斯混合聚类和改进条件变分自编码的多风电场功率日场景生成方法[J]. 中国电力, 2024, 57 (12): 17- 29. |
LI Dan, LIANG Yunyan, MIAO Shuwei, et al. Daily power scenario generation method for multiple wind farms based on Gaussian mixture clustering and improved conditional variational autoencoder[J]. Electric Power, 2024, 57 (12): 17- 29. | |
11 | 赵书强, 金天然, 李志伟, 等. 考虑时空相关性的多风电场出力场景生成方法[J]. 电网技术, 2019, 43 (11): 3997- 4004. |
ZHAO Shuqiang, JIN Tianran, LI Zhiwei, et al. Wind power scenario generation for multiple wind farms considering temporal and spatial correlations[J]. Power System Technology, 2019, 43 (11): 3997- 4004. | |
12 | 邹斌, 李冬. 基于有效容量分布的含风电场电力系统随机生产模拟[J]. 中国电机工程学报, 2012, 32 (7): 23- 31, 187. |
ZOU Bin, LI Dong. Power system probabilistic production simulation with wind generation based on available capacity distribution[J]. Proceedings of the CSEE, 2012, 32 (7): 23- 31, 187. | |
13 |
LEE D, BALDICK R. Future wind power scenario synthesis through power spectral density analysis[J]. IEEE Transactions on Smart Grid, 2014, 5 (1): 490- 500.
DOI |
14 |
PANDŽIĆ H, DVORKIN Y, QIU T, et al. Toward cost-efficient and reliable unit commitment under uncertainty[J]. IEEE Transactions on Power Systems, 2016, 31 (2): 970- 982.
DOI |
15 | 廖文龙, 杨德昌, 葛磊蛟, 等. 基于像素卷积生成网络的可再生能源场景生成[J]. 高电压技术, 2022, 48 (4): 1320- 1331. |
LIAO Wenlong, YANG Dechang, GE Leijiao, et al. Renewable energy scenario generation based on pixel convolutional generative networks[J]. High Voltage Engineering, 2022, 48 (4): 1320- 1331. | |
16 | 王守相, 陈海文, 李小平, 等. 风电和光伏随机场景生成的条件变分自动编码器方法[J]. 电网技术, 2018, 42 (6): 1860- 1869. |
WANG Shouxiang, CHEN Haiwen, LI Xiaoping, et al. Conditional variational automatic encoder method for stochastic scenario generation of wind power and photovoltaic system[J]. Power System Technology, 2018, 42 (6): 1860- 1869. | |
17 |
JIANG C M, MAO Y F, CHAI Y, et al. Scenario generation for wind power using improved generative adversarial networks[J]. IEEE Access, 2018, 6, 62193- 62203.
DOI |
18 | 李康平, 张展耀, 王飞, 等. 基于GAN场景模拟与条件风险价值的独立型微网容量随机优化配置模型[J]. 电网技术, 2019, 43 (5): 1717- 1725. |
LI Kangping, ZHANG Zhanyao, WANG Fei, et al. Stochastic optimization model of capacity configuration for stand-alone microgrid based on scenario simulation using GAN and conditional value at risk[J]. Power System Technology, 2019, 43 (5): 1717- 1725. | |
19 | 尹清青, 何涛, 吴馨, 等. 基于生成对抗网络的二次屏柜交直流侵入信号检测方法[J]. 东北电力大学学报, 2024, 44 (4): 21- 27. |
YIN Qingqing, HE Tao, WU Xin, et al. AC-DC intrusion signal detection method based on generative adversarial network for secondary panel cabinet[J]. Journal of Northeast Electric Power University, 2024, 44 (4): 21- 27. | |
20 | 李宝琴, 吴俊勇, 强子玥, 等. 基于改进DCGAN的电力系统暂态稳定增强型自适应评估[J]. 电力系统自动化, 2022, 46 (2): 73- 82. |
LI Baoqin, WU Junyong, QIANG Ziyue, et al. Enhanced adaptive assessment on transient stability of power system based on improved deep convolutional generative adversarial network[J]. Automation of Electric Power Systems, 2022, 46 (2): 73- 82. | |
21 | 宋宗耘, 张健, 牛东晓, 等. 基于模糊密度K-medoids聚类和NSGA-Ⅱ算法的绿色分时电价优化研究[J]. 智慧电力, 2019, 47 (3): 38- 45. |
SONG Zongyun, ZHANG Jian, NIU Dongxiao, et al. Green time of use electricity price optimization based on fuzzy density K-medoids algorithm and NSGA-Ⅱ[J]. Smart Power, 2019, 47 (3): 38- 45. | |
22 |
KONG X Y, XIAO J, LIU D H, et al. Robust stochastic optimal dispatching method of multi-energy virtual power plant considering multiple uncertainties[J]. Applied Energy, 2020, 279, 115707.
DOI |
23 |
ZHU J, ZHAO Z Y, ZHENG X R, et al. Time-series power forecasting for wind and solar energy based on the SL-transformer[J]. Energies, 2023, 16 (22): 7610.
DOI |
24 |
PURLU M, TURKAY B E. Optimal allocation of renewable distributed generations using heuristic methods to minimize annual energy losses and voltage deviation index[J]. IEEE Access, 2022, 10, 21455- 21474.
DOI |
25 | 杨皓然, 杨茂, 苏欣. 计及预测误差时空-条件相依特性的日内光伏出力区间预测方法[J]. 南方电网技术, 2023, 17 (2): 128- 136. |
YANG Haoran, YANG Mao, SU Xin. Intraday photovoltaic output interval prediction method considering the spatiotemporal-conditional dependence of prediction error[J]. Southern Power System Technology, 2023, 17 (2): 128- 136. |
[1] | 汤明润, 李若旸, 刘慕然, 程晓钰, 刘铫, 杨淑霞. 电力系统稳态下可再生能源大规模接入量预测[J]. 中国电力, 2025, 58(2): 126-132. |
[2] | 黄堃, 付明, 翟家祥, 华昊辰. 基于改进线性化ADMM的多微网经济运行分布式协调优化[J]. 中国电力, 2025, 58(2): 193-202. |
[3] | 鲁玲, 苑涛, 杨波, 李欣, 鲁洋, 蒲秋平, 张鑫. 计及㶲效率和多重不确定性的区域综合能源系统双层优化[J]. 中国电力, 2025, 58(1): 128-140. |
[4] | 邹小燕, 张瑞宏. 考虑政府干预的可再生能源与储能企业合作模式演化博弈研究[J]. 中国电力, 2025, 58(1): 153-163. |
[5] | 邵冲, 胡荣义, 余姣, 王明典. 考虑荷电与储氢状态的风光氢储系统动态控制仿真模型[J]. 中国电力, 2024, 57(7): 109-124. |
[6] | 胡旭, 安锐坚, 杜宇晨, 施啸寒, 王越. 欧洲—北非氢能协同发展研究[J]. 中国电力, 2024, 57(7): 151-162. |
[7] | 武群丽, 朱新宇. 可再生能源配额制下风光储联合参与现货市场的交易决策[J]. 中国电力, 2024, 57(4): 77-88. |
[8] | 王麒翔, 韩震焘, 梁毅. 基于博弈论均衡的风险防控经济调度分析[J]. 中国电力, 2024, 57(10): 69-77. |
[9] | 但扬清, 王蕾, 郑伟民, 武佳卉, 王晨轩, 余高旺. 高比例可再生能源接入背景下电网承载能力鲁棒提升策略[J]. 中国电力, 2023, 56(9): 104-111. |
[10] | 武震, 霍彦达, 张翼, 黄巨龙, 戴剑锋. 考虑新能源发电量季节性分布的省区级季节性储能需求测算方法[J]. 中国电力, 2023, 56(8): 40-47. |
[11] | 刘东, 张越, 皮俊波, 单连飞, 刘赫, 宋鹏程, 姜涛. 面向电网调控信息智能检索的知识图谱构建及应用[J]. 中国电力, 2023, 56(7): 78-84. |
[12] | 张鑫, 叶俊杰, 崔瑶, 黄鑫, 仲林林. 基于语义信息距离解耦的变电运维多类别缺陷图像检测[J]. 中国电力, 2023, 56(6): 209-218. |
[13] | 汤芳, 代红才, 张宁, 吴越, 薛美美, 陈睿. 能耗双控向碳排放双控转变影响分析及推进路径设计[J]. 中国电力, 2023, 56(12): 255-261. |
[14] | 周震震, 宋云海, 何宇浩, 王黎伟, 黄和燕, 何珏, 朱志航, 闫云凤. 基于分组查询注意力的可扩展电力人员行为分类方法[J]. 中国电力, 2023, 56(11): 77-85. |
[15] | 刘之琳, 许传龙, 郑海峰, 李江涛, 姚力, 刘青, 杜翼. 德国关停核电前后保供应促消纳经验分析[J]. 中国电力, 2023, 56(10): 145-152. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||