中国电力 ›› 2023, Vol. 56 ›› Issue (11): 77-85.DOI: 10.11930/j.issn.1004-9649.202305046
• 面向电网设备状态感知的低功耗无线传感网技术及应用 • 上一篇 下一篇
周震震1(), 宋云海1, 何宇浩1, 王黎伟1, 黄和燕1, 何珏1, 朱志航2, 闫云凤2(
)
收稿日期:
2023-05-09
接受日期:
2023-10-13
出版日期:
2023-11-28
发布日期:
2023-11-28
作者简介:
周震震(1986—),男,硕士,高级工程师,从事数字电网技术研究,E-mail: zhouzhenzhen@im.ehv.csg基金资助:
Zhenzhen ZHOU1(), Yunhai SONG1, Yuhao HE1, Liwei WANG1, Heyan HUANG1, Jue HE1, Zhihang ZHU2, Yunfeng YAN2(
)
Received:
2023-05-09
Accepted:
2023-10-13
Online:
2023-11-28
Published:
2023-11-28
Supported by:
摘要:
电力人员行为识别是电力系统安全运维的重要环节,现有的人员行为识别算法主要采用支持向量机和多层感知机进行行为分类,存在识别精度低、未考虑人体骨架之间交互关系、迁移性、通用性差等问题。针对上述问题,提出一种基于自注意力与交叉注意力机制的行为分类解码器,充分考虑了人体骨架之间的关联。其分类精度相比传统分类方法提升10%~20%,较深度学习多层感知机(multilayer perceptron,MLP)分类方法提升2%以上。该方法运用编码器-解码器架构的二阶段方法进行行为识别,使得解码器可以适用于任意姿态估计,网络后端具有很强的可扩展性。此外,采用分组解码的方式克服了注意力机制带来的二次方复杂度,使得该解码器可以扩展到更多行为类别,具有更好的普适性。该行为识别算法能够在基于变电站工作场景下的人员图像数据集验证中达到优异的识别效果,综合识别率达91.1%,验证了所提电力人员行为分类方法的有效性和适用性。
周震震, 宋云海, 何宇浩, 王黎伟, 黄和燕, 何珏, 朱志航, 闫云凤. 基于分组查询注意力的可扩展电力人员行为分类方法[J]. 中国电力, 2023, 56(11): 77-85.
Zhenzhen ZHOU, Yunhai SONG, Yuhao HE, Liwei WANG, Heyan HUANG, Jue HE, Zhihang ZHU, Yunfeng YAN. Extensible Classification Method for Power Personnel Behavior Based on Pose Estimation[J]. Electric Power, 2023, 56(11): 77-85.
行为类别 | 样本数量 | |
攀爬(Climbing) | 2278 | |
跨越(Crossing) | 2470 | |
打电话(Calling) | 2721 | |
倒地(Falling) | 2486 | |
托举(Carrying) | 2555 |
表 1 私有数据集样本数量
Table 1 Number of private data set samples
行为类别 | 样本数量 | |
攀爬(Climbing) | 2278 | |
跨越(Crossing) | 2470 | |
打电话(Calling) | 2721 | |
倒地(Falling) | 2486 | |
托举(Carrying) | 2555 |
增强方法 | 倍数改变区间 | |
改变亮度 | 0.90~1.10 | |
改变对比度 | 0.75~1.25 | |
改变饱和度 | 0.90~1.10 |
表 2 不同数据增强方法的设置
Table 2 Settings for different data enhancement methods
增强方法 | 倍数改变区间 | |
改变亮度 | 0.90~1.10 | |
改变对比度 | 0.75~1.25 | |
改变饱和度 | 0.90~1.10 |
编码器 | 识别 算法 | Top-1 Acc/% | 参数 个数/M | 浮点运算 次数/G | Inf Time/s | |||||
OpenPose | KNN | 67.2 | — | — | 402 | |||||
SVM | 79.0 | — | — | 338 | ||||||
MLP | 85.4 | 78.1 | 29.9 | 256 | ||||||
本文 | 87.4 | 78.2 | 31.5 | 223 | ||||||
CPN | KNN | 71.3 | — | — | 515 | |||||
SVM | 82.6 | — | — | 450 | ||||||
MLP | 88.0 | 57.8 | — | 326 | ||||||
本文 | 90.2 | 58.0 | — | 297 | ||||||
Simple Base | KNN | 71.7 | — | — | 438 | |||||
SVM | 83.0 | — | — | 392 | ||||||
MLP | 88.3 | 68.6 | 15.7 | 288 | ||||||
本文 | 90.7 | 68.8 | 16.2 | 256 | ||||||
HRNet | KNN | 72.2 | — | — | 476 | |||||
SVM | 83.6 | — | — | 414 | ||||||
MLP | 88.8 | 63.6 | 14.6 | 309 | ||||||
本文 | 91.1 | 63.7 | 15.1 | 284 |
表 3 算法对比实验结果
Table 3 Comparative experiment results of different algorithms
编码器 | 识别 算法 | Top-1 Acc/% | 参数 个数/M | 浮点运算 次数/G | Inf Time/s | |||||
OpenPose | KNN | 67.2 | — | — | 402 | |||||
SVM | 79.0 | — | — | 338 | ||||||
MLP | 85.4 | 78.1 | 29.9 | 256 | ||||||
本文 | 87.4 | 78.2 | 31.5 | 223 | ||||||
CPN | KNN | 71.3 | — | — | 515 | |||||
SVM | 82.6 | — | — | 450 | ||||||
MLP | 88.0 | 57.8 | — | 326 | ||||||
本文 | 90.2 | 58.0 | — | 297 | ||||||
Simple Base | KNN | 71.7 | — | — | 438 | |||||
SVM | 83.0 | — | — | 392 | ||||||
MLP | 88.3 | 68.6 | 15.7 | 288 | ||||||
本文 | 90.7 | 68.8 | 16.2 | 256 | ||||||
HRNet | KNN | 72.2 | — | — | 476 | |||||
SVM | 83.6 | — | — | 414 | ||||||
MLP | 88.8 | 63.6 | 14.6 | 309 | ||||||
本文 | 91.1 | 63.7 | 15.1 | 284 |
1 |
张亮, 屈刚, 李慧星, 等. 智能电网电力监控系统网络安全态势感知平台关键技术研究及应用[J]. 上海交通大学学报, 2021, 55 (S2): 103- 109.
DOI |
ZHANG Liang, QU Gang, LI Huixing, et al. Research and application of key technologies of network security situation awareness for smart grid power control systems[J]. Journal of Shanghai Jiao Tong University, 2021, 55 (S2): 103- 109.
DOI |
|
2 |
彭超逸, 张昆, 胡亚平, 等. 动态监测系统在电力市场环境下的应用[J]. 发电技术, 2021, 42 (5): 595- -603.
DOI |
PENG Chaoyi, ZHANG Kun, HU Yaping, et al. Application of dynamic monitoring system in electricity market environment[J]. Power Generation Technology, 2021, 42 (5): 595- -603.
DOI |
|
3 |
阮莹, 叶行汶, 邓明锋, 等. 基于自适应VMD和A-SVD的MOA在线监测方法[J]. 中国电力, 2021, 54 (10): 177- 185.
DOI |
RUAN Ying, YE Xingwen, DENG Mingfeng, et al. A new online monitoring method for MOA based on A-VMD and A-SVD[J]. Electric Power, 2021, 54 (10): 177- 185.
DOI |
|
4 |
王业, 崔玉, 陆兆沿, 等. 基于CNN图像识别算法的保护装置智能巡视技术[J]. 电力工程技术, 2022, 41 (6): 252- 257.
DOI |
WANG Ye, CUI Yu, LU Zhaoyan, et al. Intelligent inspection technology of protection device based on convolution neural network image recognition algorithm[J]. Electric Power Engineering Technology, 2022, 41 (6): 252- 257.
DOI |
|
5 | 代维利. 基于改进人工神经网络的人体姿态识别方法在人机交互医疗设备中的应用[J/OL]. 计算机测量与控制: 1–9[2023-10-05]. http://kns.cnki.net/kcms/detail/11.4762.TP.20230818.1313.004.html. |
DAI Weili. Application of improved artificial neural network-based human pose recognition method in human-machine interactive medical devices[J/OL]. Computer Measurement & Control: 1–9[2023-10-05]. http://kns.cnki.net/kcms/detail/11.4762.TP.20230818.1313.004.html. | |
6 |
李颀, 姜莎莎. 面向家庭安防系统的姿态和物体融合识别方法[J]. 中国科技论文, 2021, 16 (3): 281- 287.
DOI |
LI Qi, JIANG Shasha. Fusing pose and interactive objects recognition method for home security system[J]. China Sciencepaper, 2021, 16 (3): 281- 287.
DOI |
|
7 |
周巡, 黄保青, 陈亚晨, 等. 智能眼镜人机交互功能中眼行为识别方法的设计与实现[J]. 激光杂志, 2022, 43 (3): 76- 81.
DOI |
ZHOU Xun, HUANG Baoqing, CHEN Yachen, et al. Eye movement detection of human-machine interaction for smart glass[J]. Laser Journal, 2022, 43 (3): 76- 81.
DOI |
|
8 | SCHULDT C. Recognizing human motions: a local svm approach[J]. Proc. of IEEE Int. conf. on Pattern Recognition Aug, 2004, 3. |
9 | TOLSTIKHIN I, HOULSBY N, KOLESNIKOV A, et al. MLP-Mixer: an all-MLP architecture for vision: 10.48550/arXiv. 2105.01601[P]. 2021. |
10 |
王鸿, 邓元实, 常政威, 等. 基于深度学习的电力作业人员行为识别技术[J]. 四川电力技术, 2022, 45 (3): 23- 28.
DOI |
WANG Hong, DENG Yuanshi, CHANG Zhengwei, et al. Behavior recognition technology of power operating person based on deep learning[J]. Sichuan Electric Power Technology, 2022, 45 (3): 23- 28.
DOI |
|
11 |
宋怀波, 韩梦璇, 王云飞, 等. 基于人体姿态估计与场景交互的果园喷施行为检测方法[J]. 农业机械学报, 2023, 54 (2): 63- 72.
DOI |
SONG Huaibo, HAN Mengxuan, WANG Yunfei, et al. Monitoring of spraying behavior in orchard based on interaction of human posture estimation and scenes[J]. Transactions of the Chinese Society for Agricultural Machinery, 2023, 54 (2): 63- 72.
DOI |
|
12 | 赵文杰. 基于关键点检测和多分类器融合决策的人体行为识别研究与应用[D]. 济南: 山东大学, 2021. |
ZHAO Wenjie. Research and application of human behavior recognition based on key point detection and multi-classifier fusion decision[D]. Jinan: Shandong University, 2021. | |
13 |
ABEYWICKRAMA T, CHEEMA M A, TANIAR D. K-nearest neighbors on road networks[J]. Proceedings of the VLDB Endowment, 2016, 9 (6): 492- 503.
DOI |
14 | JORDAN A. On discriminative vs. generative classifiers: a comparison of logistic regression and naive bayes[J]. Discrimination, 2002. |
15 |
王婷婷, 丁浩, 张周胜. 基于深度学习和多模型融合的局部放电模式识别方法[J]. 电力工程技术, 2023, 42 (3): 188- 195.
DOI |
WANG Tingting, DING Hao, ZHANG Zhousheng. A partial discharge pattern recognition method based on deep learning and multi-model fusion[J]. Electric Power Engineering Technology, 2023, 42 (3): 188- 195.
DOI |
|
16 |
王鸿, 陈明举, 熊兴中, 等. 基于OpenPose与AT-STGCN的电力作业人员行为识别技术[J]. 四川轻化工大学学报(自然科学版), 2023, 36 (4): 61- 70.
DOI |
WANG Hong, CHEN Mingju, XIONG Xingzhong, et al. Behavior recognition technology of power operator based on OpenPose and AT-STGCN[J]. Journal of Sichuan University of Science & Engineering (Natural Science Edition), 2023, 36 (4): 61- 70.
DOI |
|
17 | COVINGTON P, ADAMS J, SARGIN E. Deep neural networks for YouTube recommendations[C]//Proceedings of the 10th ACM Conference on Recommender Systems. Boston, Massachusetts, USA. New York: ACM, 2016: 191–198. |
18 | 钱学成. 静态图像中的行为识别系统设计[D]. 广州: 华南理工大学, 2016. |
QIAN Xuecheng. Design of behavior recognition system in static image[D]. Guangzhou: South China University of Technology, 2016. | |
19 |
陈立潮, 秦杰, 陆望东, 等. 自注意力机制的短文本分类方法[J]. 计算机工程与设计, 2022, 43 (3): 728- 734.
DOI |
CHEN Lichao, QIN Jie, LU Wangdong, et al. Short text classification method based on self-attention mechanism[J]. Computer Engineering and Design, 2022, 43 (3): 728- 734.
DOI |
|
20 |
刘云, 薛盼盼, 李辉, 等. 基于深度学习的关节点行为识别综述[J]. 电子与信息学报, 2021, 43 (6): 1789- 1802.
DOI |
LIU Yun, XUE Panpan, LI Hui, et al. A review of action recognition using joints based on deep learning[J]. Journal of Electronics & Information Technology, 2021, 43 (6): 1789- 1802.
DOI |
|
21 | 梁绪, 李文新, 张航宁. 人体行为识别方法研究综述[J]. 计算机应用研究, 2022, 39 (3): 651- 660. |
LIANG Xu, LI Wenxin, ZHANG Hangning. Review of research on human action recognition methods[J]. Application Research of Computers, 2022, 39 (3): 651- 660. | |
22 |
周燕, 刘紫琴, 曾凡智, 等. 深度学习的二维人体姿态估计综述[J]. 计算机科学与探索, 2021, 15 (4): 641- 657.
DOI |
ZHOU Yan, LIU Ziqin, ZENG Fanzhi, et al. Survey on two-dimensional human pose estimation of deep learning[J]. Journal of Frontiers of Computer Science and Technology, 2021, 15 (4): 641- 657.
DOI |
|
23 | VASWANI A, SHAZEER N, PARMAR N, et al. Attention is all you need[C]//Proceedings of the 31st International Conference on Neural Information Processing Systems. Long Beach, California, USA. New York: ACM, 2017: 6000–6010. |
24 | 王薇, 张青, 龙飞, 等. 基于深度学习的危险行为识别系统设计[J]. 信息与电脑(理论版), 2022, 34 (9): 62- 64. |
WANG Wei, ZHANG Qing, LONG Fei, et al. Design of dangerous behavior recognition system based on deep learning[J]. Information & Computer, 2022, 34 (9): 62- 64. | |
25 |
吴春香, 吴恋. 面向视频的人员入侵检测方法研究及应用[J]. 计算机技术与发展, 2022, 32 (4): 116- 121.
DOI |
WU Chunxiang, WU Lian. Research and application of video oriented personnel intrusion detection method[J]. Computer Technology and Development, 2022, 32 (4): 116- 121.
DOI |
|
26 | CARION N, MASSA F, SYNNAEVE G, et al. End-to-end object detection with transformers[M]//Computer Vision–ECCV 2020. Cham: Springer International Publishing, 2020: 213-229. |
27 | SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation[C]//2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Long Beach, CA, USA. IEEE, 2020: 5686–5696. |
[1] | 姜通海, 王峰, 刘子琪, 单帅杰. 基于改进生成对抗网络的风光气象资源联合场景生成方法[J]. 中国电力, 2025, 58(3): 183-192. |
[2] | 高岩, 吴汉斌, 张纪欣, 张华铭, 张沛. 基于组合深度学习的光伏功率日前概率预测模型[J]. 中国电力, 2024, 57(4): 100-110. |
[3] | 吴晓刚, 阎洁, 葛畅, 唐雅洁, 倪筹帷, 季青锋. 基于改进GRU-CNN的风光水一体化超短期功率预测方法[J]. 中国电力, 2023, 56(9): 178-186,205. |
[4] | 刘东, 张越, 皮俊波, 单连飞, 刘赫, 宋鹏程, 姜涛. 面向电网调控信息智能检索的知识图谱构建及应用[J]. 中国电力, 2023, 56(7): 78-84. |
[5] | 张鑫, 叶俊杰, 崔瑶, 黄鑫, 仲林林. 基于语义信息距离解耦的变电运维多类别缺陷图像检测[J]. 中国电力, 2023, 56(6): 209-218. |
[6] | 陆友文, 崔昊, 陈佳宁, 彭祥佳, 冯双, 刘栋. 基于RA-CNN和同步相量的风电场次/超同步振荡参数智能辨识方法[J]. 中国电力, 2023, 56(4): 46-55,67. |
[7] | 苏向敬, 宇海波, 符杨, 田书欣, 李海瑜, 耿福海. 基于DALSTM和联合分位数损失的海上风电功率概率预测[J]. 中国电力, 2023, 56(11): 10-19. |
[8] | 李冰, 白云山, 赵宽, 郭聪彬, 翟永杰. 基于HSCA-YOLOv7的风电机组叶片表面缺陷检测算法[J]. 中国电力, 2023, 56(10): 43-52. |
[9] | 陈铁, 张治藩, 李咸善, 陈一夫, 李鸿鑫. 基于混合模态分解和LSTM-CNN的变压器油中溶解气体浓度预测[J]. 中国电力, 2023, 56(1): 132-141. |
[10] | 樊江川, 于昊正, 刘慧婷, 杨丽君, 安佳坤. 基于多分支门控残差卷积神经网络的短期电力负荷预测[J]. 中国电力, 2022, 55(11): 155-162,174. |
[11] | 李丰君, 王磊, 赵健, 张建宾, 张世尧, 田杨阳. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55(11): 149-154. |
[12] | 赵永良, 付鑫, 郭阳, 边迎迎, 王思宁. 基于深度学习和图像识别的电力配件智能出入库[J]. 中国电力, 2021, 54(3): 55-60. |
[13] | 马静怡, 崔昊杨, 张明达, 孙益辉, 许永鹏. 基于改进Faster RCNN的小尺度入侵目标识别及定位[J]. 中国电力, 2021, 54(3): 38-44. |
[14] | 周俊煌, 黄廷城, 谢小瑜, 范纹郡, 易婷婷, 张勇军. 视频图像智能识别技术在输变电系统中的应用研究综述[J]. 中国电力, 2021, 54(1): 124-134,166. |
[15] | 吴云亮, 张建新, 李豹, 李鹏, 李智勇, 周鑫, 杨燕, 赖晓文. 深度学习辅助约束辨识的电力市场快速出清方法[J]. 中国电力, 2020, 53(9): 90-97,207. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||