中国电力 ›› 2021, Vol. 54 ›› Issue (1): 124-134,166.DOI: 10.11930/j.issn.1004-9649.201912202
周俊煌1, 黄廷城1, 谢小瑜2, 范纹郡1, 易婷婷1, 张勇军2
收稿日期:
2019-01-02
修回日期:
2020-03-01
出版日期:
2021-01-05
发布日期:
2021-01-11
作者简介:
周俊煌(1993—),男,硕士,从事人工智能技术在电力系统中的应用研究,E-mail:272757783@qq.com;黄廷城(1992—),男,硕士,从事电力系统可靠性分析、人工智能技术研究,E-mail:339536312@qq.com;谢小瑜(1996—),女,通信作者,硕士研究生,从事人工智能技术在电力系统中的应用研究,E-mail:1943294998@qq.com
基金资助:
ZHOU Junhuang1, HUANG Tingcheng1, XIE Xiaoyu2, FAN Wenjun1, YI Tingting1, ZHANG Yongjun2
Received:
2019-01-02
Revised:
2020-03-01
Online:
2021-01-05
Published:
2021-01-11
Supported by:
摘要: 电网的数字化建设催生海量的数据,视频图像智能识别技术在输变电系统中的设备环境视频监控、无人化巡检等应用场景中,以强大的图像数据价值萃取能力引起广泛的关注。因此,首先介绍视频图像智能识别技术的基本概念和基本研究框架,总结在电力输变电系统中常用的图像识别技术;然后从面向电网设备和环境安全监测的智能巡检以及面向人身安全监控的智能巡查2个角度出发,对视频图像智能识别技术在输变电系统中的四大应用研究场景分别进行综述;在此基础上,探讨视频图像智能识别在电力输变电系统应用中所面临的三大挑战,并针对挑战提出可能的解决方案与研究思路,给出若干点建议。
周俊煌, 黄廷城, 谢小瑜, 范纹郡, 易婷婷, 张勇军. 视频图像智能识别技术在输变电系统中的应用研究综述[J]. 中国电力, 2021, 54(1): 124-134,166.
ZHOU Junhuang, HUANG Tingcheng, XIE Xiaoyu, FAN Wenjun, YI Tingting, ZHANG Yongjun. Review of Application Research of Video Image Intelligent Recognition Technology in Power Transmission and Distribution Systems[J]. Electric Power, 2021, 54(1): 124-134,166.
[1] 南方电网报. 全力承接“数字南网”建设推动创建世界一流企业 [EB/OL]. (2019-07-17)[2019-09-20]. http://www.csg.cn/xwzx/2019/gsyw/201907/t20190716_302100.html. [2] 国家电网公司. 为建设世界一流能源互联网企业而奋斗 [EB/OL]. (2019-01-18)[2019-09-20]. http://www.sgcc.com.cn/html/sgcc_main/col2018102916/2019-03/13/20190313184224820635513_1.shtml. [3] 南方电网报. 南方电网公司加快推进数字化转型和“数字南网”建设, 构建数字电网、数字运营、数字能源生态 [EB/OL]. (2019-05-17)[2019-09-20]. http://www.csg.cn/xwzx/2019/gsyw/201905/t20190517_300152.html. [4] 张宇航, 邱才明, 杨帆, 等. 深度学习在电网图像数据及时空数据中的应用综述[J]. 电网技术, 2019, 43(6): 1865-1873 ZHANG Yuhang, ROBERT. QIU, YANG Fan, et al. Overview of application of deep learning with image data and spatio-temporal data of power grid[J]. Power System Technology, 2019, 43(6): 1865-1873 [5] 梁立伟. 200万高清H.265网络枪形摄像机[J]. 中国安防, 2014(23): 66-68 LIANG Liwei. 2 million HD H.265 network gun camera[J]. China Security & Protection, 2014(23): 66-68 [6] 黄新波, 蒋兴良. 智能电网输电线路在线监测技术进展[J]. 广东电力, 2014, 27(6): 72-76 HUANG Xinbo, JIANG Xingliang. Progress of smart grid power transmission line online monitoring technology[J]. Guangdong Electric Power, 2014, 27(6): 72-76 [7] 郭敬东, 陈彬, 王仁书, 等. 基于YOLO的无人机电力线路杆塔巡检图像实时检测[J]. 中国电力, 2019, 52(7): 17-23 GUO Jingdong, CHEN Bin, WANG Renshu, et al. YOLO-based real-time detection of power line poles from unmanned aerial vehicle inspection vision[J]. Electric Power, 2019, 52(7): 17-23 [8] 彭向阳, 金亮, 王柯, 等. 变电站机器人智能巡检系统设计及应用[J]. 中国电力, 2018, 51(2): 82-89 PENG Xiangyang, JIN Liang, WANG Ke, et al. Design and application of robot inspection system in substation[J]. Electric Power, 2018, 51(2): 82-89 [9] 翟永杰, 王迪. 一种快速有效的变电站监控视频质量检测方法[J]. 广东电力, 2016, 29(7): 88-92 ZHAI Yongjie, WANG Di. A rapid and effective detection method for monitoring video quality in substation[J]. Guangdong Electric Power, 2016, 29(7): 88-92 [10] 钱金菊, 麦晓明, 王柯, 等. 广东电网大型无人直升机电力线路规模化巡检应用及效果[J]. 广东电力, 2016, 29(5): 124-129 QIAN Jinju, MAI Xiaoming, WANG Ke, et al. Application and effect of large-scale inspection on power lines by using large unmanned helicopter in Guangdong power grid[J]. Guangdong Electric Power, 2016, 29(5): 124-129 [11] 刘梓权, 王慧芳, 曹靖, 等. 基于卷积神经网络的电力设备缺陷文本分类模型研究[J]. 电网技术, 2018, 42(2): 644-650 LIU Ziquan, WANG Huifang, CAO Jing, et al. A classification model of power equipment defect texts based on convolutional neural network[J]. Power System Technology, 2018, 42(2): 644-650 [12] 杨挺, 赵黎媛, 王成山. 人工智能在电力系统及综合能源系统中的应用综述[J]. 电力系统自动化, 2019, 43(1): 2-14 YANG Ting, ZHAO Liyuan, WANG Chengshan. Review on application of artificial intelligence in power system and integrated energy system[J]. Automation of Electric Power Systems, 2019, 43(1): 2-14 [13] SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Boston, MA, 2015: 1–9. [14] HINTON G, DENG L, YU D, et al. Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups[J]. IEEE Signal Processing Magazine, 2012, 29(6): 82-97. [15] ONG B T, SUGIURA K, ZETTSU K. Dynamic pre-training of deep recurrent neural networks for predicting environmental monitoring data[C]//IEEE International Conference on Big Data (Big Data), Washington, DC, 2014: 760–765. [16] YAN Q S, GONG D, ZHANG Y N. Two-stream convolutional networks for blind image quality assessment[J]. IEEE Transactions on Image Processing, 2019, 28(5): 2200-2211. [17] 陈文鹏. 计算机智能图像识别算法研究[J]. 无线互联科技, 2019(8): 121-122 CHEN Wenpeng. Research on computer intelligent image recognition algorithm[J]. Wireless Internet Technology, 2019(8): 121-122 [18] 付文龙, 谭佳文, 吴喜春, 等. 基于图像处理与形态特征分析的智能变电站保护压板状态识别[J]. 电力自动化设备, 2019, 39(7): 203-207 FU Wenlong, TAN Jiawen, WU Xichun, et al. Protection platen status recognition based on image processing and morphological feature analysis for smart substation[J]. Electric Power Automation Equipment, 2019, 39(7): 203-207 [19] 梁英宏, 王知衍, 曹晓叶, 等. 视频图像理解的一般性框架研究[J]. 计算机应用研究, 2008, 25(7): 2203-2207 LIANG Yinghong, WANG Zhiyan, CAO Xiaoye, et al. Research on common framework of video image understanding[J]. Application Research of Computers, 2008, 25(7): 2203-2207 [20] 朱德利, 杨德刚, 胡蓉, 等. 适于移动终端字符识别环境的自适应多阈值二值化方法[J]. 计算机科学, 2019, 46(8): 315-320 ZHU Deli, YANG Degang, HU Rong, et al. Adaptive multi-level threshold binaryzation method for optical character recognition in mobile environment[J]. Computer Science, 2019, 46(8): 315-320 [21] 陈汗青, 万艳玲, 王国刚. 数字图像处理技术研究进展[J]. 工业控制计算机, 2013, 26(1): 72-74 CHEN Hanqing, WAN Yanling, WANG Guogang. Progress of digital image technology processing research[J]. Industrial Control Computer, 2013, 26(1): 72-74 [22] WANG Q, ZHANG L, ZOU W B, et al. Salient video object detection using a virtual border and guided filter[J]. Pattern Recognition, 2020, 97: 106998. [23] AMORIM W P, TETILA E C, PISTORI H, et al. Semi-supervised learning with convolutional neural networks for UAV images automatic recognition[J]. Computers and Electronics in Agriculture, 2019, 164: 104932. [24] DEB R, LIEW A W C. Missing value imputation for the analysis of incomplete traffic accident data[J]. Information Sciences, 2016, 339: 274-289. [25] GAO J, ZHANG Q Y, LIU Q G, et al. Positron emission tomography image reconstruction using feature extraction[J]. Journal of X-Ray Science and Technology, 2019, 27(5): 949-963. [26] 陈媛媛, 郑加柱, 魏浩翰, 等. 基于不同特征的随机森林极化SAR图像分类[J]. 计算机系统应用, 2019, 28(8): 183-189 CHEN Yuanyuan, ZHENG Jiazhu, WEI Haohan, et al. Tidal flat classification based on random forest model using different features of polarimetric SAR[J]. Computer Systems & Applications, 2019, 28(8): 183-189 [27] 罗俊海, 杨阳. 基于数据融合的目标检测方法综述[J]. 控制与决策, 2020, 35(1): 1-14 LUO Junhai, YANG Yang. An overview of target detection methods based on data fusion[J]. Control and Decision, 2020, 35(1): 1-14 [28] 叶维扬, 张贤亮, 张蓉, 等. 基于亮度的视觉目标跟踪精度分析[J]. 计算机与数字工程, 2019, 47(8): 1956-1960 YE Weiyang, ZHANG Xianliang, ZHANG Rong, et al. Accuracy analysis of visual targets' tracking based on the visual luminance[J]. Computer & Digital Engineering, 2019, 47(8): 1956-1960 [29] 姜斯浩, 宋慧慧, 张开华, 等. 基于双重金字塔网络的视频目标分割方法[J]. 计算机应用, 2019, 39(8): 2242-2246 JIANG Sihao, SONG Huihui, ZHANG Kaihua, et al. Video object segmentation method based on dual pyramid network[J]. Journal of Computer Applications, 2019, 39(8): 2242-2246 [30] 郭圣, 曾懿辉, 张纪宾, 等. 输电线路防外力破坏智能监控系统的应用[J]. 广东电力, 2018, 31(4): 139-143 GUO Sheng, ZENG Yihui, ZHANG Jibin, et al. Application of intelligent monitoring system for external force damage prevention for transmission lines[J]. Guangdong Electric Power, 2018, 31(4): 139-143 [31] AHMAD J, MALIK A S, ABDULLAH M F, et al. A novel method for vegetation encroachment monitoring of transmission lines using a single 2D camera[J]. Pattern Analysis and Applications, 2015, 18(2): 419-440. [32] 邢晓强, 黄新波, 纪超, 等. 基于多特征融合的输电线路山火识别预警系统设计与实现[J]. 广东电力, 2018, 31(6): 107-113 XING Xiaoqiang, HUANG Xinbo, JI Chao, et al. Design and realization of mountain fire identification pre-warning system for transmission lines based on multi-feature fusion[J]. Guangdong Electric Power, 2018, 31(6): 107-113 [33] 何立夫, 陆佳政, 刘毓, 等. 输电线路山火可见光-红外多光源精准定位技术[J]. 高电压技术, 2018, 44(8): 2548-2555 HE Lifu, LU Jiazheng, LIU Yu, et al. Precise positioning technology of wild fire nearby transmission lines by visible and infrared vision[J]. High Voltage Engineering, 2018, 44(8): 2548-2555 [34] 贾思棋, 李军辉, 杜冬梅, 等. 基于随机Hough变换的线路覆冰厚度图像识别技术研究[J]. 中国电力, 2019, 52(12): 39-53 JIA Siqi, LI Junhui, DU Dongmei, et al. Image recognition of icing thickness of transmission line based on random hough transform[J]. Electric Power, 2019, 52(12): 39-53 [35] 赖秋频, 杨军, 谭本东, 等. 基于YOLOv2网络的绝缘子自动识别与缺陷诊断模型[J]. 中国电力, 2019, 52(7): 31-39 LAI Qiupin, YANG Jun, TAN Bendong, et al. An automatic recognition and defect diagnosis model of transmission line insulator based on YOLOv2 network[J]. Electric Power, 2019, 52(7): 31-39 [36] 冯敏, 罗旺, 余磊, 等. 适用于无人机巡检图像的输电线路螺栓检测方法[J]. 电力科学与技术学报, 2018, 33(4): 135-140 FENG Min, LUO Wang, YU Lei, et al. a bolt detection method for pictures captured from an unmanned aerial vehicle in power transmission line inspection[J]. Journal of Electric Power Science and Technology, 2018, 33(4): 135-140 [37] PRASAD P S, RAO B P. LBP-HF features and machine learning applied for automated monitoring of insulators for overhead power distribution lines[C]//International Conference on Wireless Communications, Signal Processing and Networking. Chennai, India: IEEE, 2016: 808–812. [38] 孙启悦, 王龙. 基于超像素图像分割的变电设备故障诊断研究[J]. 浙江电力, 2017, 36(12): 86-89 SUN Qiyue, WANG Long. Study on substation equipment fault diagnosis based on super-pixel segmentation[J]. Zhejiang Electric Power, 2017, 36(12): 86-89 [39] 李喆, 李建增, 张岩, 等. 无人机侦察影像去雾处理算法研究综述[J]. 飞航导弹, 2018(1): 47-50 [40] 仇翔. 无人机遥感模糊图像恢复技术研究[D]. 长春: 中国科学院大学, 2017. QIU Xiang. Research on UAV remote sensing blurred image restoration technology[D]. Changchun: University of Chinese Academy of Sciences, 2017. [41] 胡金磊, 周俊煌, 林孝斌, 等. 基于S-HOG+C算子的变电作业人员着装分析方法研究[J]. 机电工程技术, 2018, 47(12): 136-140 HU Jinlei, ZHOU Junhuang, LIN Xiaobin, et al. Research on dressing analysis method of substation workers based on S-HOG+C operator[J]. Mechanical & Electrical Engineering Technology, 2018, 47(12): 136-140 [42] 常政威, 彭倩, 陈缨. 基于机器学习和图像识别的电力作业现场安全监督方法[J]. 中国电力, 2020, 53(4): 155-160 CHANG Zhengwei, PENG Qian, CHEN Ying. Safety supervision method for power operation site based on machine learning and image recognition[J]. Electric Power, 2020, 53(4): 155-160 [43] 厉美含, 唐忠, 雷景生. 变电站遥视系统中基于Adaboost人脸识别算法改进研究[J]. 电网与清洁能源, 2017, 33(9): 61-67 LI Meihan, TANG Zhong, LEI Jingsheng. Improvement of face recognition algorithm based on Adaboost in substation remote monitoring system[J]. Advances of Power System & Hydroelectric Engineering, 2017, 33(9): 61-67 [44] 朱红岷, 戴道清, 李静正. 基于图像处理的变电站视频智能分析研究[J]. 计算机工程与应用, 2018, 54(7): 264-270 ZHU Hongmin, DAI Daoqing, LI Jingzheng. Research of intelligent video analysis in transformer substation based on image processing[J]. Computer Engineering and Applications, 2018, 54(7): 264-270 [45] 陈旭, 韩文花. 变电站智能监控系统[J]. 广东电力, 2015, 28(6): 34-40 CHEN Xu, HAN Wenhua. Intelligent monitoring system of substation[J]. Guangdong Electric Power, 2015, 28(6): 34-40 [46] 揭英达. 变电站智能视频监控系统设计[D]. 广州: 暨南大学, 2018. JIE Yingda. The design of intelligent video monitoring system for substation[D]. Guangzhou: Jinan University, 2018. [47] 肖行诠, 徐亮, 吴天明, 等. 贝叶斯目标跟踪技术在变电站作业管控中的应用研究[J]. 华东电力, 2014, 42(3): 510-515 XIAO Xingquan, XU Liang, WU Tianming, et al. Application of Bayesian object tracking in substation job safety management[J]. East China Electric Power, 2014, 42(3): 510-515 [48] 周念成, 廖建权, 王强钢, 等. 深度学习在智能电网中的应用现状分析与展望[J]. 电力系统自动化, 2019, 43(4): 180-191 ZHOU Niancheng, LIAO Jianquan, WANG Qianggang, et al. Analysis and prospect of deep learning application in smart grid[J]. Automation of Electric Power Systems, 2019, 43(4): 180-191 [49] 徐波, 张立群, 刘朝欣. 变电站巡检机器人保护装置识别关键技术研究[J]. 山东电力技术, 2018, 45(8): 18-23 XU Bo, ZHANG Liqun, LIU Chaoxin. Key technologies for identification of substation patrol robot protection device[J]. Shandong Electric Power, 2018, 45(8): 18-23 [50] 邓欣, 杨清云, 米建勋, 等. 基于相关滤波的仪表定位方法[J]. 电子测量与仪器学报, 2019, 33(5): 102-110 DENG Xin, YANG Qingyun, MI Jianxun, et al. Instruments localization method based on correlation filter[J]. Journal of Electronic Measurement and Instrumentation, 2019, 33(5): 102-110 [51] 刘云鹏, 裴少通, 武建华, 等. 基于深度学习的输变电设备异常发热点红外图片目标检测方法[J]. 南方电网技术, 2019, 13(2): 27-33 LIU Yunpeng, PEI Shaotong, WU Jianhua, et al. Deep learning based target detection method for abnormal hot spots infrared images of transmission and transformation equipment[J]. Southern Power System Technology, 2019, 13(2): 27-33 [52] 彭向阳, 金亮, 王锐, 等. 变电站机器人智能巡检技术及应用效果[J]. 高压电器, 2019, 55(4): 223-232 PENG Xiangyang, JIN Liang, WANG Rui, et al. Substation robot intelligent inspection technology and its application[J]. High Voltage Apparatus, 2019, 55(4): 223-232 [53] 刘明春, 张葛祥, 黄占鳌, 等. 基于深度学习的变电站巡检机器人道路场景识别[J]. 科学技术与工程, 2019, 19(13): 158-163 LIU Mingchun, ZHANG Gexiang, HUANG Zhanao, et al. Road scene recognition of substation inspection robot based on deep learning[J]. Science Technology and Engineering, 2019, 19(13): 158-163 [54] 冯正伟, 孟宪华, 黄浩林, 等. 变电站智能巡检机器人应用提升研究[J]. 浙江电力, 2019, 38(8): 23-29 FENG Zhengwei, MENG Xianhua, HUANG Haolin, et al. Research on application and promotion of substation smart patrol robot[J]. Zhejiang Electric Power, 2019, 38(8): 23-29 [55] 周飞燕, 金林鹏, 董军. 卷积神经网络研究综述[J]. 计算机学报, 2017, 40(6): 1229-1251 ZHOU FeiYan, JIN LinPeng, DONG Jun. Review of convolutional neural network[J]. Chinese Journal of Computers, 2017, 40(6): 1229-1251 [56] CHANG J R, CHEN Y S. Batch-normalized maxout network in network[EB/OL][2019-09-20]. https://arxiv.org/abs/1511.02583. [57] 刘勇, 陈海滨, 刘方. 基建现场巡检无人机智能感知系统的研究与应用[J]. 电力系统保护与控制, 2018, 46(15): 155-161. LIU Yong, CHEN Haibin, LIU Fang. Research and application of intelligent perception system for unmanned aerial vehicle inspection at construction site[J]. Power System Protection and Control, 2018, 46(15): 155-161. [58] RUSSAKOVSKY O, DENG J, SU H, et al. ImageNet large scale visual recognition challenge[J]. International Journal of Computer Vision, 2015, 115(3): 211-252. [59] SHAO L, WU D, LI X L. Learning deep and wide: a spectral method for learning deep networks[J]. IEEE Transactions on Neural Networks and Learning Systems, 2014, 25(12): 2303-2308. [60] NORDENG I E, HASAN A, OLSEN D, et al. DEBC detection with deep learning[M]//Image Analysis. Cham: Springer International Publishing, 2017: 248–259. [61] 刘志颖, 缪希仁, 陈静, 等. 电力架空线路巡检可见光图像智能处理研究综述[J]. 电网技术, 2020, 44(3): 1057-1069 LIU Zhiying, MIAO Xiren, CHEN Jing, et al. Review of visible image intelligent processing for transmission line inspection[J]. Power System Technology, 2020, 44(3): 1057-1069 [62] 史晋涛, 李喆, 顾超越, 等. 基于样本扩充的Faster R-CNN电网异物监测技术[J]. 电网技术, 2020, 44(1): 44-51 SHI Jintao, LI Zhe, GU Chaoyue, et al. The research of foreign bodies monitoring of grid with faster R-CNN based on sample expansion[J]. Power System Technology, 2020, 44(1): 44-51 [63] 陆继翔, 李昊, 徐康, 等. 基于迁移学习的小样本输电线路巡检图像处理方法[J]. 全球能源互联网, 2019, 2(4): 409-415 LU Jixiang, LI Hao, XU Kang, et al. Defect recognition using few-shot learning and transfer learning for transmission line inspection images[J]. Global Energy Interconnection, 2019, 2(4): 409-415 [64] 谭洁帆, 朱焱, 陈同孝, 等. 基于卷积神经网络和代价敏感的不平衡图像分类方法[J]. 计算机应用, 2018, 38(7): 1862-1865, 1871 TAN Jiefan, ZHU Yan, CHEN Tungshou, et al. Imbalanced image classification approach based on convolution neural network and cost-sensitivity[J]. Journal of Computer Applications, 2018, 38(7): 1862-1865, 1871 [65] 曹雅茜, 黄海燕. 基于概率采样和集成学习的不平衡数据分类算法[J]. 计算机科学, 2019, 46(5): 203-208 CAO Yaxi, HUANG Haiyan. Imbalanced data classification algorithm based on probability sampling and ensemble learning[J]. Computer Science, 2019, 46(5): 203-208 [66] LI X Z, SUN Q R, LIU Y Y, et al. Learning to self-train for semi-supervised few-shot classification[EB/OL](2019-01-03)[2019-09-20]. https://arxiv.org/abs/1906.00562. [67] 马鹏, 樊艳芳. 基于深度迁移学习的小样本智能变电站电力设备部件检测[J]. 电网技术, 2020, 44(3): 1148-1159 MA Peng, FAN Yanfang. Small sample smart substation power equipment component detection based on deep transfer learning[J]. Power System Technology, 2020, 44(3): 1148-1159 |
[1] | 姜通海, 王峰, 刘子琪, 单帅杰. 基于改进生成对抗网络的风光气象资源联合场景生成方法[J]. 中国电力, 2025, 58(3): 183-192. |
[2] | 刘东, 张越, 皮俊波, 单连飞, 刘赫, 宋鹏程, 姜涛. 面向电网调控信息智能检索的知识图谱构建及应用[J]. 中国电力, 2023, 56(7): 78-84. |
[3] | 张鑫, 叶俊杰, 崔瑶, 黄鑫, 仲林林. 基于语义信息距离解耦的变电运维多类别缺陷图像检测[J]. 中国电力, 2023, 56(6): 209-218. |
[4] | 周震震, 宋云海, 何宇浩, 王黎伟, 黄和燕, 何珏, 朱志航, 闫云凤. 基于分组查询注意力的可扩展电力人员行为分类方法[J]. 中国电力, 2023, 56(11): 77-85. |
[5] | 李丰君, 王磊, 赵健, 张建宾, 张世尧, 田杨阳. 基于天气融合和LSTM网络的分布式光伏短期功率预测方法[J]. 中国电力, 2022, 55(11): 149-154. |
[6] | 赵永良, 付鑫, 郭阳, 边迎迎, 王思宁. 基于深度学习和图像识别的电力配件智能出入库[J]. 中国电力, 2021, 54(3): 55-60. |
[7] | 马静怡, 崔昊杨, 张明达, 孙益辉, 许永鹏. 基于改进Faster RCNN的小尺度入侵目标识别及定位[J]. 中国电力, 2021, 54(3): 38-44. |
[8] | 吴云亮, 张建新, 李豹, 李鹏, 李智勇, 周鑫, 杨燕, 赖晓文. 深度学习辅助约束辨识的电力市场快速出清方法[J]. 中国电力, 2020, 53(9): 90-97,207. |
[9] | 赵会茹, 赵一航, 郭森. 基于互补集合经验模态分解和长短期记忆神经网络的短期电力负荷预测[J]. 中国电力, 2020, 53(6): 48-55. |
[10] | 杨晓楠, 孙博, 郎燕生. 基于深度学习的特高压直流闭锁故障智能调度决策[J]. 中国电力, 2020, 53(6): 8-17. |
[11] | 周艳真, 查显煜, 兰健, 郭庆来, 孙宏斌, 薛峰, 王胜明. 基于数据增强和深度残差网络的电力系统暂态稳定预测[J]. 中国电力, 2020, 53(1): 22-31. |
[12] | 赖秋频, 杨军, 谭本东, 王亮, 傅思遥, 韩立伟. 基于YOLOv2网络的绝缘子自动识别与缺陷诊断模型[J]. 中国电力, 2019, 52(7): 31-39. |
[13] | 郭敬东, 陈彬, 王仁书, 王佳宇, 仲林林. 基于YOLO的无人机电力线路杆塔巡检图像实时检测[J]. 中国电力, 2019, 52(7): 17-23. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||