中国电力 ›› 2020, Vol. 53 ›› Issue (6): 8-17.DOI: 10.11930/j.issn.1004-9649.201910138

• 人工智能在电力系统的应用 • 上一篇    下一篇

基于深度学习的特高压直流闭锁故障智能调度决策

杨晓楠, 孙博, 郎燕生   

  1. 电网安全与节能国家重点实验室(中国电力科学研究院有限公司)),北京 100192
  • 收稿日期:2019-10-30 修回日期:2020-03-23 发布日期:2020-06-05
  • 作者简介:杨晓楠(1990-),女,硕士,工程师,从事电力系统自动化、电网调度研究,E-mail:guidao_0909@163.com;孙博(1991-),男,硕士,工程师,从事电力系统自动化、电网调度研究,E-mail:sunbo1@epri.sgcc.com.cn;郎燕生(1972-),男,硕士,高级工程师(教授级),从事电力调度自动化高级应用研究,E-mail:langys@epri.sgcc.com.cn
  • 基金资助:
    国家自然科学基金资助项目(61671293);国家电网公司科技项目(基于深度学习的特高压交直流互联大电网故障智能决策技术研究,5206001701FV)

Intelligent Dispatch Decision-Making for UHVDC Blocking Fault Based on Deep Learning

YANG Xiaonan, SUN Bo, LANG Yansheng   

  1. State Key Laboratory of Power Grid Safety and Energy Conservation (China Electric Power Research Institute), Beijing 100192, China
  • Received:2019-10-30 Revised:2020-03-23 Published:2020-06-05
  • Supported by:
    This work is supported by National Natural Science Foundation of China (No.61671293) , Science and Technology Project of State Grid Corporation (Research on Ultra-high Voltage AC-DC Interconnected Power Grid Fault Intelligent Decision Technology Based on Deep Learning, No.5206001701FV)

摘要: 针对特高压直流闭锁故障的处置策略问题,提出一种基于深度学习的故障特征建模方法及故障后电网调度策略生成方法,所提智能调控决策依据电网直流故障特征和运行环境信息,通过大数据驱动模型训练得到故障后的调度策略。首先根据故障环境信息,利用故障影响相关性提取有效故障信息,构建故障特征模型。然后介绍深度学习类神经网络原理和多层感知器模型,提出利用深度网络提取训练故障前后运行特征,自动生成调控策略的思路。之后利用反向传播算法构建深度学习框架,通过不断计算损失函数和准确率修正训练模型,自动生成有效故障处置策略。最后利用锦苏直流特高压线路相关的电力系统验证了所提方法的有效性。

关键词: 深度学习, 直流故障, 数据驱动, 调度决策, 人工智能

Abstract: For disposal of the UHVDC blocking faults, this paper proposes a deep-learning-based fault feature modeling method and a post-fault grid dispatching strategy generation method. The proposed intelligent dispatch decision-making is based on the DC fault characteristics and operating environment information of power systems, and the post-fault dispatching strategy is generated through training with the big data driven model. Firstly, based on the fault environment information, the effective fault information is extracted to construct the fault feature model. And then, the principle of deep-learning neural network and the multi-layer perceptron model are introduced, and the idea is proposed to use deep network to extract the running characteristics before and after the training fault and automatically generate the dispatching strategy. Thirdly, the back-propagation algorithm is used to construct the deep learning framework, and the effective fault-disposal strategy is automatically generated by continuously calculating the loss function and the accuracy correction training model. Finally, the effectiveness of the proposed method is verified using the related power system of the Jinsu UHV DC transmission line.

Key words: deep learning, DC fault, data driven, dispatch decision-making, artificial intelligence