[1] 陈国平, 李明节, 许涛. 特高压交直流电网系统保护及其关键技术[J]. 电力系统自动化, 2018, 42(22): 2-10 CHEN Guoping, LI Mingjie, XU Tao. System protection and its key technologies of UHV AC and DC power grid[J]. Automation of Electric Power Systems, 2018, 42(22): 2-10 [2] 鲍颜红, 徐泰山, 周华, 等. 一种安全稳定紧急调控在线预决策方法[J]. 中国电力, 2019, 52(8): 91-97 BAO Yanhong, XU Taisha, ZHOU Hua, et al. An online pre-decision method for security and stability emergency regulation[J]. Electric Power, 2019, 52(8): 91-97 [3] 闪鑫, 王轶禹, 金一丁, 等. 特高压互联电网一体化监视和故障协同处置方案及应用[J]. 电力系统自动化, 2018, 42(2): 84-91 SHAN Xin, WANG Yiyu, JIN Yiding, et al. Scheme and application of integrated monitoring and fault co-disposal technology of UHV interconnected power grid[J]. Automation of Electric Power Systems, 2018, 42(2): 84-91 [4] 刘艳, 张凡, 顾雪平. 大停电后的机组投运风险评估[J]. 中国电机工程学报, 2013, 33(31): 106-113, 13 LIU Yan, ZHANG Fan, GU Xueping. Risk assessment for restoring units following large-scale blackout[J]. Proceedings of the CSEE, 2013, 33(31): 106-113, 13 [5] 臧二彬, 顾雪平, 李鹏飞, 等. 考虑并联线路的含直流落点受端系统恢复[J]. 中国电力, 2019, 52(8): 55-63 ZANG Erbin, GU Xueping, LI Pengfei, et al. Restoration of power systems with AC/DC conversion terminal at receiving-end considering parallel transmission lines[J]. Electric Power, 2019, 52(8): 55-63 [6] 范士雄, 李立新, 王松岩, 等. 人工智能技术在电网调控中的应用研究[J]. 电网技术, 2020, 44(2): 401-411 FAN Shixiong, LI Lixin, WANG Songyan, et al. Application analysis and exploration of artificial intelligence technology in power grid dispatch and control[J]. Power System Technology, 2020, 44(2): 401-411 [7] 崔杨, 陈正洪, 许沛华. 基于机器学习的集群式风光一体短期功率预测技术[J]. 中国电力, 2020, 53(3): 1-7 CUI Yang, CHEN Zhenghong, XU Peihua. Short-term power prediction for wind farm and solar plant clusters based on machine learning method[J]. Electric Power, 2020, 53(3): 1-7 [8] 李明节, 陶洪铸, 许洪强, 等. 电网调控领域人工智能技术框架与应用展望[J]. 电网技术, 2020, 44(2): 393-400 LI Mingjie, TAO Hongzhu, XU Hongqiang, et al. The technical framework and application prospect of artificial intelligence application in the field of power grid dispatching and control[J]. Power System Technology, 2020, 44(2): 393-400 [9] 郭敬东, 陈彬, 王仁书, 等. 基于YOLO的无人机电力线路杆塔巡检图像实时检测[J]. 中国电力, 2019, 52(7): 17-23 GUO Jingdong, CHEN Bin, WANG Renshu, et al. YOLO-based real-time detection of power line poles from unmanned aerial vehicle inspection vision[J]. Electric Power, 2019, 52(7): 17-23 [10] 刘威, 张东霞, 王新迎, 等. 基于深度强化学习的电网紧急控制策略研究[J]. 中国电机工程学报, 2018, 38(1): 109-119, 347 LIU Wei, ZHANG Dongxia, WANG Xinying, et al. A decision making strategy for generating unit tripping under emergency circumstances based on deep reinforcement learning[J]. Proceedings of the CSEE, 2018, 38(1): 109-119, 347 [11] 孙宏斌, 黄天恩, 郭庆来, 等. 面向调度决策的智能机器调度员研制与应用[J]. 电网技术, 2020, 44(1): 1-8 SUN Hongbin, HUANG Tian'en, GUO Qinglai, et al. Automatic operator for decision-making in dispatch: research and applications[J]. Power System Technology, 2020, 44(1): 1-8 [12] 郝博可, 赵洪峰, 程宽, 等. 特高压交直流混联输电及稳定运行综述[J]. 东北电力技术, 2019, 40(7): 5-7 HAO Boke, ZHAO Hongfeng, CHENG Kuan, et al. Overview of UHV AC/DC hybrid transmission and its stable operation[J]. Northeast Electric Power Technology, 2019, 40(7): 5-7 [13] 李程昊, 谭阳琛, 熊永新, 等. 特高压直流多馈入系统换相失败预防协调控制[J]. 电网技术, 2019, 43(10): 3532-3542 LI Chenghao, TAN Yangchen, XIONG Yongxin, et al. Coordinated control of UHVDC multi-infeed system for commutation failure prevention[J]. Power System Technology, 2019, 43(10): 3532-3542 [14] 熊国江. 基于计算智能的电网故障诊断方法研究[D]. 武汉: 华中科技大学, 2014. XIONG Guojiang. Research on methods for fault diagnosis of power grids based on computational intelligence[D]. Wuhan: Huazhong University of Science and Technology, 2014. [15] 罗亚洲, 陈得治, 李轶群, 等. 华北多特高压交直流强耦合大受端电网系统保护方案设计[J]. 电力系统自动化, 2018, 42(22): 11-18, 68 LUO Yazhou, CHEN Dezhi, LI Yiqun, et al. Design of system protection scheme for North China multi-UHV AC and DC strong coupling large receiving-end power grid[J]. Automation of Electric Power Systems, 2018, 42(22): 11-18, 68 [16] 黄丽娟. 遗传算法与人工神经网络的应用[J]. 电子技术与软件工程, 2019(22): 127-128 [17] 周艳真, 查显煜, 兰健, 等. 基于数据增强和深度残差网络的电力系统暂态稳定预测[J]. 中国电力, 2020, 53(1): 22-31 ZHOU Yanzhen, ZHA Xianyu, LAN Jian, et al. Transient stability prediction of power systems based on deep residual network and data augmentation[J]. Electric Power, 2020, 53(1): 22-31 [18] 王毅星. 基于深度学习和迁移学习的电力数据挖掘技术研究[D]. 杭州: 浙江大学, 2019. WANG Yixing. Power data mining technology based on deep learning and transfer learning[D]. Hangzhou: Zhejiang University, 2019. [19] 史真惠, 朱守真, 郑竞宏, 等. 改进BP神经网络在负荷动静比例确定中的应用[J]. 中国电机工程学报, 2004, 24(7): 25-29 SHI Zhenhui, ZHU Shouzhen, ZHENG Jinghong, et al. Application of improved back propagation neural network for identification of the percentage of dynamic component in composite load[J]. Proceedings of the CSEE, 2004, 24(7): 25-29 [20] 李重春, 祝安琪, 王烁罡, 等. 电力大数据下的短期电力负荷预测[J]. 电力大数据, 2019, 22(1): 66-70 LI Chongchun, ZHU Anqi, WANG Shuogang, et al. Short-term power load forecasting under power big data[J]. Power Systems and Big Data, 2019, 22(1): 66-70 |