中国电力 ›› 2024, Vol. 57 ›› Issue (8): 159-167.DOI: 10.11930/j.issn.1004-9649.202308131

• 电网 • 上一篇    下一篇

基于关联规则与重构误差的二次系统故障检测方法

王阳1(), 马伟东1, 刘洎溟2, 王博石2, 姚凯3, 韩伟1, 余娟2()   

  1. 1. 国网河南省电力公司电力科学研究院,河南 郑州 450003
    2. 输变电装备技术全国重点实验室(重庆大学),重庆 400044
    3. 国网河南省电力公司,河南 郑州 450003
  • 收稿日期:2023-08-30 接受日期:2024-05-29 出版日期:2024-08-28 发布日期:2024-08-24
  • 作者简介:王阳(1986—),女,高级工程师,从事继电保护等研究,E-mail:wangyang_0201@qq.com
    余娟(1980—),女,通信作者,教授,从事电网分析、人工智能等研究,E-mail:yujuancqu@qq.com
  • 基金资助:
    国网河南省电力公司电力科学研究院科技项目(基于全寿命周期的变电站二次系统可靠性评价技术研究,SGHADK00DWJS2200241)。

Secondary System Fault Detection Method Based on Association Rules and Reconstruction Error

Yang WANG1(), Weidong MA1, Jiming LIU2, Boshi WANG2, Kai YAO3, Wei HAN1, Juan YU2()   

  1. 1. State Grid Henan Electric Power Research Institute, Zhengzhou 450003, China
    2. State Key Laboratory of Power Transmission Equipment Technology (Chongqing University), Chongqing 400044, China
    3. State Grid Henan Electric Power Co., Ltd., Zhengzhou 450003, China
  • Received:2023-08-30 Accepted:2024-05-29 Online:2024-08-28 Published:2024-08-24
  • Supported by:
    This work is supported by the Science and Technology Project of Electric Power Research Institute of State Grid Henan Electric Power Company (Research on Reliability Evaluation Technology of Substation Secondary System Based on Life Cycle, No.SGHADK00DWJS2200241).

摘要:

二次系统是否可靠直接关系整个变电站乃至系统能否安全可靠运行。随着高比例新能源并网,如何有效检测二次系统故障愈发重要。针对现有逻辑回路的故障方法对数据完备性要求较高而难以实际应用,现有二次设备的故障检测方法难以辨识正常数据和故障数据的微小差异导致计算精度无法保障的问题,提出基于关联规则与重构误差的二次系统故障检测方法。首先,利用Apriori算法求出故障报警信息与逻辑回路中故障装置的关联规则,实现逻辑回路故障快速诊断;然后,利用正常二次设备的运行数据训练个体判别器,通过衡量待判别数据的重构误差来判别二次设备运行状态,并利用集成学习模型量化设备当前故障检测概率;最后,对集成学习模型进行集成优化,以提高二次设备异常预警的可信度。利用河南省某变电站实际运行数据集进行仿真测试,验证了所提方法的有效性和准确性。

关键词: 二次系统, 故障检测, 数据驱动, 关联规则, 重构误差

Abstract:

The reliability of the secondary system directly affects the safe and reliable operation of the entire substation and even the power grid. With the high proportion of renewable energy sources integrated into power systems, it is increasingly important to effectively detect the secondary system faults. However, existing research faces two challenges: on the one hand, the existing fault detection methods for logic circuits have high requirements for data completeness and are difficult to apply in practice; on the other hand, the existing fault detection methods for secondary equipment are difficult to identify the small differences between normal and fault data, and the computational accuracy is difficult to guarantee. Therefore this paper proposes a secondary system fault detection method based on association rules and reconstruction errors. Firstly, the Apriori algorithm is used to derive the association rules between fault alarm information and fault devices in the logic circuit, achieving rapid diagnosis of logic circuit faults. Then, the individual discriminator is trained using the operational data of normal secondary equipment, and the operating status of the secondary equipment is determined by measuring the reconstruction error of the data to be discriminated. The ensemble learning model is used to quantify the current fault detection probability of the equipment. Finally, the ensemble learning model is optimized to improve the accuracy of secondary equipment anomaly warning. The effectiveness and accuracy of the proposed method was verified by simulating the dataset from a substation in Henan Province.

Key words: secondary system, fault detection, data driven, association rules, reconstruction error