中国电力 ›› 2023, Vol. 56 ›› Issue (12): 51-57.DOI: 10.11930/j.issn.1004-9649.202306041
• 分布式智能电网的规划、运行和电力交易 • 上一篇 下一篇
收稿日期:
2023-06-12
出版日期:
2023-12-28
发布日期:
2023-12-28
作者简介:
李鹏华(1990—),女,博士,助理研究员,从事主动配电网建模与优化控制研究,E-mail: li_peng_hua@163.com基金资助:
Penghua LI1(), Zhuoran SONG2(
), Wenchuan WU1(
)
Received:
2023-06-12
Online:
2023-12-28
Published:
2023-12-28
Supported by:
摘要:
电力系统最优潮流计算是典型的非线性非凸问题,线性化潮流模型主要用于将原始最优潮流问题转化为凸优化问题。配电网覆盖范围广,设备众多,模型参数维护困难,已有的基于数据驱动的线性化潮流模型多基于完备的系统量测数据,而实际中考虑经济性安装的测量单元,无法覆盖所有设备,系统量测通常是部分可观测的。为解决量测的部分可观测性问题,提出一种数据驱动线性潮流模型,并基于此构建基于数据驱动的线性化最优潮流模型,该模型对量测中的不良数据具有鲁棒性。通过对不同部分可观测场景的测试,验证了所提模型的有效性。
李鹏华, 宋卓然, 吴文传. 部分可观测条件下的配电网数据驱动最优潮流模型[J]. 中国电力, 2023, 56(12): 51-57.
Penghua LI, Zhuoran SONG, Wenchuan WU. A Data-Driven Optimal Power Flow Model under Partial Observability[J]. Electric Power, 2023, 56(12): 51-57.
场景 | 类型 | 可观测部分 | 不可观测部分 | |||
一 | 节点 | 1~15, 19, 20, 23, 26~31 | 16~18, 21, 22, 24, 25, 32, 33 | |||
支路 | 1—2, 2—3, 3—4, 4—5, 5—6, 6—7, 7—8, 8—9, 9—10, 10—11, 11—12, 12—13, 13—14, 14—15, 2—19, 19—20, 3—23, 6—26, 26—27, 27—28, 28—29, 29—30, 30—31 | 15—16, 16—17, 17—18, 20—21, 21—22, 23—24, 24—25, 31—32, 32—33 | ||||
二 | 节点 | 1~8, 11~15, 19, 20, 23, 26~31 | 9, 10, 16~18, 21, 22, 24, 25, 32, 33 | |||
支路 | 1—2, 2—3, 3—4, 4—5, 5—6, 6—7, 7—8, 10—11, 11—12, 12—13, 13—14, 14—15, 2—19, 19—20, 3—23, 6—26, 26—27, 27—28, 28—29, 29—30, 30—31 | 15—16, 16—17, 17—18, 20—21, 21—22, 23—24, 24—25, 31—32, 32—33, 8—9, 9—10 |
表 1 算例场景设置
Table 1 Scenario settings of case studies
场景 | 类型 | 可观测部分 | 不可观测部分 | |||
一 | 节点 | 1~15, 19, 20, 23, 26~31 | 16~18, 21, 22, 24, 25, 32, 33 | |||
支路 | 1—2, 2—3, 3—4, 4—5, 5—6, 6—7, 7—8, 8—9, 9—10, 10—11, 11—12, 12—13, 13—14, 14—15, 2—19, 19—20, 3—23, 6—26, 26—27, 27—28, 28—29, 29—30, 30—31 | 15—16, 16—17, 17—18, 20—21, 21—22, 23—24, 24—25, 31—32, 32—33 | ||||
二 | 节点 | 1~8, 11~15, 19, 20, 23, 26~31 | 9, 10, 16~18, 21, 22, 24, 25, 32, 33 | |||
支路 | 1—2, 2—3, 3—4, 4—5, 5—6, 6—7, 7—8, 10—11, 11—12, 12—13, 13—14, 14—15, 2—19, 19—20, 3—23, 6—26, 26—27, 27—28, 28—29, 29—30, 30—31 | 15—16, 16—17, 17—18, 20—21, 21—22, 23—24, 24—25, 31—32, 32—33, 8—9, 9—10 |
相对 误差 | | 场景一 | 场景二 | |||||||
平均误差 | 最大误差 | 平均误差 | 最大误差 | |||||||
Pij | A | 1.89×10–3 | 6.59×10–3 | 1.59×10–3 | 7.07×10–3 | |||||
B | 1.18×10–3 | 5.27×10–3 | 2.27×10–3 | 1.39×10–2 | ||||||
C | 1.35×10–3 | 7.22×10–3 | 1.97×10–3 | 8.34×10–3 | ||||||
Qij | A | 6.80×10–3 | 1.43×10–2 | 9.32×10–3 | 1.84×10–2 | |||||
B | 4.65×10–3 | 1.56×10–2 | 8.09×10–3 | 1.92×10–2 | ||||||
C | 5.25×10–3 | 1.49×10–2 | 7.23×10–3 | 1.72×10–2 | ||||||
V | A | 3.68×10–4 | 8.06×10–4 | 4.47×10–4 | 9.30×10–4 | |||||
B | 3.90×10–4 | 9.41×10–4 | 5.29×10–4 | 1.20×10–3 | ||||||
C | 4.01×10–4 | 8.93×10–4 | 5.04×10–4 | 1.14×10–3 |
表 2 量测含不良数据的数据驱动线性化潮流模型误差统计
Table 2 Errors of data-driven linear PF under measurements with bad data
相对 误差 | | 场景一 | 场景二 | |||||||
平均误差 | 最大误差 | 平均误差 | 最大误差 | |||||||
Pij | A | 1.89×10–3 | 6.59×10–3 | 1.59×10–3 | 7.07×10–3 | |||||
B | 1.18×10–3 | 5.27×10–3 | 2.27×10–3 | 1.39×10–2 | ||||||
C | 1.35×10–3 | 7.22×10–3 | 1.97×10–3 | 8.34×10–3 | ||||||
Qij | A | 6.80×10–3 | 1.43×10–2 | 9.32×10–3 | 1.84×10–2 | |||||
B | 4.65×10–3 | 1.56×10–2 | 8.09×10–3 | 1.92×10–2 | ||||||
C | 5.25×10–3 | 1.49×10–2 | 7.23×10–3 | 1.72×10–2 | ||||||
V | A | 3.68×10–4 | 8.06×10–4 | 4.47×10–4 | 9.30×10–4 | |||||
B | 3.90×10–4 | 9.41×10–4 | 5.29×10–4 | 1.20×10–3 | ||||||
C | 4.01×10–4 | 8.93×10–4 | 5.04×10–4 | 1.14×10–3 |
相对 误差 | | 场景一 | 场景二 | |||||||
平均误差 | 最大误差 | 平均误差 | 最大误差 | |||||||
Pij | A | 2.46×10–3 | 9.86×10–3 | 1.74×10–3 | 8.21×10–3 | |||||
B | 1.99×10–3 | 6.61×10–3 | 2.78×10–3 | 1.42×10–2 | ||||||
C | 1.92×10–3 | 6.02×10–3 | 2.19×10–3 | 1.67×10–2 | ||||||
Qij | A | 6.40×10–3 | 3.28×10–2 | 2.66×10–3 | 8.94×10–3 | |||||
B | 5.54×10–3 | 2.90×10–2 | 4.28×10–3 | 2.06×10–2 | ||||||
C | 9.85×10–3 | 2.41×10–2 | 3.80×10–3 | 1.82×10–2 | ||||||
V | A | 4.85×10–4 | 1.76×10–3 | 2.15×10–4 | 6.81×10–4 | |||||
B | 2.16×10–4 | 9.90×10–4 | 1.15×10–4 | 5.35×10–4 | ||||||
C | 4.43×10–4 | 1.14×10–3 | 1.39×10–4 | 7.31×10–4 |
表 3 量测含不良数据的数据驱动最优潮流模型误差统计
Table 3 Errors of data-driven OPF under measurements with bad data
相对 误差 | | 场景一 | 场景二 | |||||||
平均误差 | 最大误差 | 平均误差 | 最大误差 | |||||||
Pij | A | 2.46×10–3 | 9.86×10–3 | 1.74×10–3 | 8.21×10–3 | |||||
B | 1.99×10–3 | 6.61×10–3 | 2.78×10–3 | 1.42×10–2 | ||||||
C | 1.92×10–3 | 6.02×10–3 | 2.19×10–3 | 1.67×10–2 | ||||||
Qij | A | 6.40×10–3 | 3.28×10–2 | 2.66×10–3 | 8.94×10–3 | |||||
B | 5.54×10–3 | 2.90×10–2 | 4.28×10–3 | 2.06×10–2 | ||||||
C | 9.85×10–3 | 2.41×10–2 | 3.80×10–3 | 1.82×10–2 | ||||||
V | A | 4.85×10–4 | 1.76×10–3 | 2.15×10–4 | 6.81×10–4 | |||||
B | 2.16×10–4 | 9.90×10–4 | 1.15×10–4 | 5.35×10–4 | ||||||
C | 4.43×10–4 | 1.14×10–3 | 1.39×10–4 | 7.31×10–4 |
场景 | 目标函数/ (美元·h–1) | 系统完全可观测 目标函数真值/(美元·h–1) | 目标函数相对误差/% | |||
一 | 73.30 | 74.27 | 1.31 | |||
二 | 73.30 | 1.31 |
表 4 目标函数误差
Table 4 Errors of optimization objectives
场景 | 目标函数/ (美元·h–1) | 系统完全可观测 目标函数真值/(美元·h–1) | 目标函数相对误差/% | |||
一 | 73.30 | 74.27 | 1.31 | |||
二 | 73.30 | 1.31 |
1 | 曾琮, 黄强, 陈德, 等. 基于改进纵横交叉算法的电网最优潮流计算[J]. 中国电力, 2021, 54 (9): 9- 16. |
ZENG Cong, HUANG Qiang, CHEN De, et al. Optimal power flow calculation with improved crisscross optimization algorithm[J]. Electric Power, 2021, 54 (9): 9- 16. | |
2 | 董昱, 董存, 于若英, 等. 基于线性最优潮流的电力系统新能源承载能力分析[J]. 中国电力, 2022, 55 (3): 1- 8. |
DONG Yu, DONG Cun, YU Ruoying, et al. Renewable energy capacity assessment in power system based on linearized OPF[J]. Electric Power, 2022, 55 (3): 1- 8. | |
3 | 王娟娟, 王涛, 刘子菡, 等. 考虑风电和负荷不确定性的输电网多目标柔性规划[J]. 中国电力, 2022, 55 (1): 168- 177. |
WANG Juanjuan, WANG Tao, LIU Zihan, et al. Multi-objective flexible planning of transmission network considering wind power and load uncertainties[J]. Electric Power, 2022, 55 (1): 168- 177. | |
4 |
LEI X Y, YANG Z F, YU J, et al. Data-driven optimal power flow: a physics-informed machine learning approach[J]. IEEE Transactions on Power Systems, 2021, 36 (1): 346- 354.
DOI |
5 |
TAN Y, CHEN Y Y, LI Y, et al. Linearizing power flow model: a hybrid physical model-driven and data-driven approach[J]. IEEE Transactions on Power Systems, 2020, 35 (3): 2475- 2478.
DOI |
6 |
YANG Z F, XIE K G, YU J, et al. A general formulation of linear power flow models: basic theory and error analysis[J]. IEEE Transactions on Power Systems, 2019, 34 (2): 1315- 1324.
DOI |
7 |
FAN Z X, YANG Z F, YU J, et al. Minimize linearization error of power flow model based on optimal selection of variable space[J]. IEEE Transactions on Power Systems, 2021, 36 (2): 1130- 1140.
DOI |
8 |
向明旭, 杨知方, 余娟, 等. 配电网线性潮流模型通式及误差分析[J]. 中国电机工程学报, 2021, 41 (6): 2053- 2064.
DOI |
XIANG Mingxu, YANG Zhifang, YU Juan, et al. Linear power flow model in distribution network: unified expression and error analysis[J]. Proceedings of the CSEE, 2021, 41 (6): 2053- 2064.
DOI |
|
9 |
MORELLO R, MUKHOPADHYAY S C, LIU Z, et al. Advances on sensing technologies for smart cities and power grids: a review[J]. IEEE Sensors Journal, 2017, 17 (23): 7596- 7610.
DOI |
10 | 鲁鹏, 吕昊, 刘念, 等. 数据-模型混合驱动的配电系统灵活性优化调度[J]. 湘潭大学学报(自然科学版), 2020, 42 (5): 84- 97. |
LU Peng, LV Hao, LIU Nian, et al. Hybrid data and model driven flexibility optimization dispatch of distribution system[J]. Journal of Xiangtan University (Natural Science Edition), 2020, 42 (5): 84- 97. | |
11 |
LIU Y X, ZHANG N, WANG Y, et al. Data-driven power flow linearization: a regression approach[J]. IEEE Transactions on Smart Grid, 2019, 10 (3): 2569- 2580.
DOI |
12 |
GUO L, ZHANG Y X, LI X L, et al. Data-driven power flow calculation method: a lifting dimension linear regression approach[J]. IEEE Transactions on Power Systems, 2022, 37 (3): 1798- 1808.
DOI |
13 | XU T, WU W C, HONG Y W, et al. Data-driven inverter-based volt/VAr control for partially observable distribution networks[J]. CSEE Journal of Power and Energy Systems, 2021, 9 (2): 548- 560. |
14 | LIN S, ZHU H. Data-driven modeling for distribution grids under partial observability[C]//2021 North American Power Symposium (NAPS). College Station, TX, USA. IEEE, 2021: 1–6. |
15 |
NOWAK S, CHEN Y C, WANG L W. Measurement-based optimal DER dispatch with a recursively estimated sensitivity model[J]. IEEE Transactions on Power Systems, 2020, 35 (6): 4792- 4802.
DOI |
16 | LI H R, WENG Y, LIAO Y Z, et al. Distribution grid impedance & topology estimation with limited or no micro-PMUs[J]. International Journal of Electrical Power & Energy Systems, 2021, 129, 106794. |
17 |
DEKA D, CHERTKOV M, BACKHAUS S. Joint estimation of topology and injection statistics in distribution grids with missing nodes[J]. IEEE Transactions on Control of Network Systems, 2020, 7 (3): 1391- 1403.
DOI |
18 |
陈勇, 李鹏, 张忠军, 等. 基于PCA-GA-LSSVM的输电线路覆冰负荷在线预测模型[J]. 电力系统保护与控制, 2019, 47 (10): 110- 119.
DOI |
CHEN Yong, LI Peng, ZHANG Zhongjun, et al. Online prediction model for power transmission line icing load based on PCA-GA-LSSVM[J]. Power System Protection and Control, 2019, 47 (10): 110- 119.
DOI |
|
19 |
陈茜, 李录平, 刘瑞, 等. 基于PCA-KNN融合算法的风力机变桨角度故障诊断方法[J]. 中国电力, 2021, 54 (11): 190- 198.
DOI |
CHEN Xi, LI Luping, LIU Rui, et al. Fault diagnosis method of wind turbine pitch angle based on PCA-KNN fusion algorithm[J]. Electric Power, 2021, 54 (11): 190- 198.
DOI |
|
20 |
张立峰, 李晶, 王智. 基于主成分分析和深度神经网络的声学层析成像温度分布重建[J]. 发电技术, 2023, 44 (3): 399- 406.
DOI |
ZHANG Lifeng, LI Jing, WANG Zhi. Reconstruction of temperature distribution by acoustic tomography based on principal component analysis and deep nerual network[J]. Power Generation Technology, 2023, 44 (3): 399- 406.
DOI |
|
21 |
LI P H, WU W C, WANG X M, et al. A data-driven linear optimal power flow model for distribution networks[J]. IEEE Transactions on Power Systems, 2023, 38 (1): 956- 959.
DOI |
22 |
徐佳宁, 倪裕隆, 朱春波. 基于改进支持向量回归的锂电池剩余寿命预测[J]. 电工技术学报, 2021, 36 (17): 3693- 3704.
DOI |
XU Jianing, NI Yulong, ZHU Chunbo. Remaining useful life prediction for lithium-ion batteries based on improved support vector regression[J]. Transactions of China Electrotechnical Society, 2021, 36 (17): 3693- 3704.
DOI |
|
23 |
赵辉, 杨赛, 岳有军, 等. 基于小波分解-卷积神经网络和支持向量回归的短期负荷预测[J]. 科学技术与工程, 2021, 21 (25): 10718- 10724.
DOI |
ZHAO Hui, YANG Sai, YUE Youjun, et al. Short-term load forecasting of convolutional neural network support vector regression using wavelet decomposition[J]. Science Technology and Engineering, 2021, 21 (25): 10718- 10724.
DOI |
|
24 |
刘斌, 毕小熊, 党军朋, 等. 基于支持向量回归的变电站蓄电池退化趋势预测[J]. 电源学报, 2020, 18 (6): 207- 214.
DOI |
LIU Bin, BI Xiaoxiong, DANG Junpeng, et al. Degradation trend prediction of battery in substation based on support vector regression[J]. Journal of Power Supply, 2020, 18 (6): 207- 214.
DOI |
|
25 | 本文算例数据附录文件[EB/OL](2023-05-21)[2023-07-28].https://www.jianguoyun.com/p/DU1W4wAQjqnoChjdn6AFIAA. |
26 | 吴文传, 张伯明, 巨云涛. 主动配电网网络分析与运行调控[M]. 北京: 科学出版社, 2016: 330-331. |
[1] | 王杰, 郑飞, 张鹏城, 陈露东, 高华, 蒙镜蓉. 基于数据驱动的高比例新能源配电网规划模型[J]. 中国电力, 2025, 58(3): 175-182. |
[2] | 计荣荣, 张淦锋, 王梦芝, 金颖杰, 李海, 黄若钒. 基于数据驱动的智能变电站信息高效校验技术[J]. 中国电力, 2025, 58(1): 100-106. |
[3] | 朱卫平, 汤奕, 魏兴慎, 刘增稷. 针对电力CPS数据驱动算法对抗攻击的防御方法[J]. 中国电力, 2024, 57(9): 32-43. |
[4] | 王阳, 马伟东, 刘洎溟, 王博石, 姚凯, 韩伟, 余娟. 基于关联规则与重构误差的二次系统故障检测方法[J]. 中国电力, 2024, 57(8): 159-167. |
[5] | 刘志伟, 马悦, 沙志成, 邵云姝, 牛远方, 董晓明, 王成福. 考虑新能源多重相关性的柔性配电网分布鲁棒优化策略[J]. 中国电力, 2024, 57(12): 97-108. |
[6] | 许竞, 赵铁军, 高小刚, 叶鞠, 孙玲玲. 高比例新能源电力系统调节资源灵活性不足风险分析[J]. 中国电力, 2024, 57(11): 129-138. |
[7] | 于宗超, 文明, 李湘华, 谢欣涛, 杨洪明. 融合群体智慧的分布式智能电网高效发展管理策略[J]. 中国电力, 2024, 57(10): 57-68. |
[8] | 姚力, 郑海峰, 单葆国, 谭显东, 许传龙, 徐志成. 基于数据驱动机会约束的发电企业电煤采购及库存优化模型[J]. 中国电力, 2023, 56(6): 176-184. |
[9] | 黎冲, 王成辉, 王高, 鲁宗虎, 马成智. 基于数据驱动的锂离子电池健康状态估计技术[J]. 中国电力, 2022, 55(8): 73-86,95. |
[10] | 张健, 于浩, 梁建权, 王悦, 刘贺千. 基于数据驱动的多污染模式电能质量耦合性评估[J]. 中国电力, 2022, 55(11): 84-90. |
[11] | 李登峰, 杨旼才, 刘育明, 徐瑞林, 余霞, 李昭炯. 基于SVR数据驱动的发电机进相极限最优化求解方法[J]. 中国电力, 2021, 54(8): 136-143,153. |
[12] | 杨晓楠, 孙博, 郎燕生. 基于深度学习的特高压直流闭锁故障智能调度决策[J]. 中国电力, 2020, 53(6): 8-17. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||